Adipose tissue responses to breaking sitting in men and women with central adiposity

Research output: Contribution to journalArticle

2 Citations (Scopus)
5 Downloads (Pure)

Abstract

Purpose Breaking prolonged sitting reduces postprandial glucose and insulin concentrations and influences skeletal muscle molecular signaling pathways, but it is unknown whether breaking sitting also affects adipose tissue. Methods Eleven central overweight participants (seven men and four postmenopausal women) 50 ± 5 yr old (mean ± SD) completed two mixed-meal feeding trials (prolonged sitting vs breaking sitting) in a randomized, counterbalanced design. The breaking sitting intervention comprised walking for 2 min every 20 min over 5.5 h. Blood samples were collected at regular intervals to examine metabolic biomarkers and adipokine concentrations. Adipose tissue samples were collected at baseline and at 5.5 h to examine changes in mRNA expression and secretion of selected adipokines ex vivo. Results Postprandial glycemia and insulinemia were attenuated by approximately 50% and 40% in breaking sitting compared with prolonged sitting (iAUC: 359 ± 117 vs 697 ± 218 mmol per 330 min·L -1, P = 0.001, and 202 ± 71 vs 346 ± 150 nmol per 330 min·L -1, P = 0.001, respectively). Despite these pronounced and sustained differences in postprandial glucose and insulin concentrations, adipose tissue mRNA expression for various genes (interleukin 6, leptin, adiponectin, pyruvate dehydrogenase kinase isozyme 4, insulin receptor substrates 1 and 2, phosphoinositide 3-kinase, and RAC-alpha serine/threonine-protein kinase) and ex vivo adipose tissue secretion of interleukin 6, leptin, and adiponectin were not different between trials. Conclusions This study demonstrates that breaking sitting with short bouts of physical activity has very pronounced effects on systemic postprandial glucose and insulin concentrations, but this does not translate into corresponding effects within adipose tissue.

Original languageEnglish
Pages (from-to)2049-2057
Number of pages9
JournalMedicine and Science in Sports and Exercise
Volume50
Issue number10
DOIs
Publication statusPublished - 1 Oct 2018

Keywords

  • Sedentary
  • gene expression
  • insulin signaling
  • physical activity
  • postprandial

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

@article{5ca8a1c1838c4a0d9f1d42c85c2e16ac,
title = "Adipose tissue responses to breaking sitting in men and women with central adiposity",
abstract = "Purpose Breaking prolonged sitting reduces postprandial glucose and insulin concentrations and influences skeletal muscle molecular signaling pathways, but it is unknown whether breaking sitting also affects adipose tissue. Methods Eleven central overweight participants (seven men and four postmenopausal women) 50 ± 5 yr old (mean ± SD) completed two mixed-meal feeding trials (prolonged sitting vs breaking sitting) in a randomized, counterbalanced design. The breaking sitting intervention comprised walking for 2 min every 20 min over 5.5 h. Blood samples were collected at regular intervals to examine metabolic biomarkers and adipokine concentrations. Adipose tissue samples were collected at baseline and at 5.5 h to examine changes in mRNA expression and secretion of selected adipokines ex vivo. Results Postprandial glycemia and insulinemia were attenuated by approximately 50{\%} and 40{\%} in breaking sitting compared with prolonged sitting (iAUC: 359 ± 117 vs 697 ± 218 mmol per 330 min·L -1, P = 0.001, and 202 ± 71 vs 346 ± 150 nmol per 330 min·L -1, P = 0.001, respectively). Despite these pronounced and sustained differences in postprandial glucose and insulin concentrations, adipose tissue mRNA expression for various genes (interleukin 6, leptin, adiponectin, pyruvate dehydrogenase kinase isozyme 4, insulin receptor substrates 1 and 2, phosphoinositide 3-kinase, and RAC-alpha serine/threonine-protein kinase) and ex vivo adipose tissue secretion of interleukin 6, leptin, and adiponectin were not different between trials. Conclusions This study demonstrates that breaking sitting with short bouts of physical activity has very pronounced effects on systemic postprandial glucose and insulin concentrations, but this does not translate into corresponding effects within adipose tissue.",
keywords = "Sedentary, gene expression, insulin signaling, physical activity, postprandial",
author = "Yung-Chih Chen and James Betts and Jean-Philippe Walhin and Dylan Thompson",
year = "2018",
month = "10",
day = "1",
doi = "10.1249/MSS.0000000000001654",
language = "English",
volume = "50",
pages = "2049--2057",
journal = "Medicine & Science in Sports & Exercise",
issn = "0195-9131",
publisher = "Lippincott Williams & Wilkins",
number = "10",

}

TY - JOUR

T1 - Adipose tissue responses to breaking sitting in men and women with central adiposity

AU - Chen, Yung-Chih

AU - Betts, James

AU - Walhin, Jean-Philippe

AU - Thompson, Dylan

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Purpose Breaking prolonged sitting reduces postprandial glucose and insulin concentrations and influences skeletal muscle molecular signaling pathways, but it is unknown whether breaking sitting also affects adipose tissue. Methods Eleven central overweight participants (seven men and four postmenopausal women) 50 ± 5 yr old (mean ± SD) completed two mixed-meal feeding trials (prolonged sitting vs breaking sitting) in a randomized, counterbalanced design. The breaking sitting intervention comprised walking for 2 min every 20 min over 5.5 h. Blood samples were collected at regular intervals to examine metabolic biomarkers and adipokine concentrations. Adipose tissue samples were collected at baseline and at 5.5 h to examine changes in mRNA expression and secretion of selected adipokines ex vivo. Results Postprandial glycemia and insulinemia were attenuated by approximately 50% and 40% in breaking sitting compared with prolonged sitting (iAUC: 359 ± 117 vs 697 ± 218 mmol per 330 min·L -1, P = 0.001, and 202 ± 71 vs 346 ± 150 nmol per 330 min·L -1, P = 0.001, respectively). Despite these pronounced and sustained differences in postprandial glucose and insulin concentrations, adipose tissue mRNA expression for various genes (interleukin 6, leptin, adiponectin, pyruvate dehydrogenase kinase isozyme 4, insulin receptor substrates 1 and 2, phosphoinositide 3-kinase, and RAC-alpha serine/threonine-protein kinase) and ex vivo adipose tissue secretion of interleukin 6, leptin, and adiponectin were not different between trials. Conclusions This study demonstrates that breaking sitting with short bouts of physical activity has very pronounced effects on systemic postprandial glucose and insulin concentrations, but this does not translate into corresponding effects within adipose tissue.

AB - Purpose Breaking prolonged sitting reduces postprandial glucose and insulin concentrations and influences skeletal muscle molecular signaling pathways, but it is unknown whether breaking sitting also affects adipose tissue. Methods Eleven central overweight participants (seven men and four postmenopausal women) 50 ± 5 yr old (mean ± SD) completed two mixed-meal feeding trials (prolonged sitting vs breaking sitting) in a randomized, counterbalanced design. The breaking sitting intervention comprised walking for 2 min every 20 min over 5.5 h. Blood samples were collected at regular intervals to examine metabolic biomarkers and adipokine concentrations. Adipose tissue samples were collected at baseline and at 5.5 h to examine changes in mRNA expression and secretion of selected adipokines ex vivo. Results Postprandial glycemia and insulinemia were attenuated by approximately 50% and 40% in breaking sitting compared with prolonged sitting (iAUC: 359 ± 117 vs 697 ± 218 mmol per 330 min·L -1, P = 0.001, and 202 ± 71 vs 346 ± 150 nmol per 330 min·L -1, P = 0.001, respectively). Despite these pronounced and sustained differences in postprandial glucose and insulin concentrations, adipose tissue mRNA expression for various genes (interleukin 6, leptin, adiponectin, pyruvate dehydrogenase kinase isozyme 4, insulin receptor substrates 1 and 2, phosphoinositide 3-kinase, and RAC-alpha serine/threonine-protein kinase) and ex vivo adipose tissue secretion of interleukin 6, leptin, and adiponectin were not different between trials. Conclusions This study demonstrates that breaking sitting with short bouts of physical activity has very pronounced effects on systemic postprandial glucose and insulin concentrations, but this does not translate into corresponding effects within adipose tissue.

KW - Sedentary

KW - gene expression

KW - insulin signaling

KW - physical activity

KW - postprandial

UR - http://www.scopus.com/inward/record.url?scp=85053400282&partnerID=8YFLogxK

U2 - 10.1249/MSS.0000000000001654

DO - 10.1249/MSS.0000000000001654

M3 - Article

VL - 50

SP - 2049

EP - 2057

JO - Medicine & Science in Sports & Exercise

JF - Medicine & Science in Sports & Exercise

SN - 0195-9131

IS - 10

ER -