Abstract
Strategies are required to reduce vibrations in machines that use rotor systems, as these disturbances reduce the life and quality of the machine. A novel low-frequency on-board counter-bend actuator topology has been designed in order to control high frequency vibrations by taking advantage of synchronous forces from the rotating frame of a rotor supported by Active Magnetic Bearings (AMBs). The AMBs ensure in return stable contactfree levitation of the rotor. A complete model of the rotor system is established, based on a finite element representation of the rotor. The feedback control forces of the AMBs are described to account for the non-collocation of the sensor and actuation, and the PD controller gains are chosen using the sensitivity function. The lowest frequency mode of the operating range is located at 2,700 RPM, and time domain analysis shows that the application of symmetric 80 N.m counter-bend moments on the rotor coupling flanges can reduce the vibration amplitude by 88% at this rotation speed.
Original language | English |
---|---|
Title of host publication | Structures and Dynamics - Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration |
Publisher | The American Society of Mechanical Engineers(ASME) |
ISBN (Electronic) | 9780791886076 |
DOIs | |
Publication status | E-pub ahead of print - 28 Oct 2022 |
Event | ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 - Rotterdam, Netherlands Duration: 13 Jun 2022 → 17 Jun 2022 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Volume | 8-B |
Conference
Conference | ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 |
---|---|
Country/Territory | Netherlands |
City | Rotterdam |
Period | 13/06/22 → 17/06/22 |
Bibliographical note
Funding Information:This research was funded by the EPSRC Future Metrology Hub, EP/P006930/1 and a University of Bath URS award for Gauthier Fieux’s PhD study.
ASJC Scopus subject areas
- General Engineering