Accurate heat transfer measurements using thermochromic liquid crystal, Part 2: application to a rotating disc

V U Kakade, G D Lock, M Wilson, J M Owen, J E Mayhew

Research output: Contribution to journalArticlepeer-review

43 Citations (SciVal)

Abstract

Encapsulated thermochromic liquid crystal (TLC) can accurately measure surface temperature in a variety of heat transfer and fluid-flow experiments. In Part 1 of this two-part paper, two narrow-band liquid crystals were specifically calibrated for application to experiments on a disc rotating at high speed (similar to 5000 rpm). Part 2 describes how these crystals were used to measure the surface temperature on the disc in a transient experiment that models the flow of internal cooling air in a gas turbine. The TLC was viewed through the transparent polycarbonate disc using a digital video camera and strobe light synchronised to the disc frequency. The convective heat transfer coefficient, h, was subsequently calculated from the one-dimensional solution of Fourier's conduction equation for a semi-infinite wall. The analysis accounted for the exponential rise in the air temperature driving the heat transfer, and for experimental uncertainties in the measured values of h. The paper focuses on the method used, and sample experimental results are provided to demonstrate the accuracy and potency of the technique.
Original languageEnglish
Pages (from-to)950-959
Number of pages10
JournalInternational Journal of Heat and Fluid Flow
Volume30
Issue number5
DOIs
Publication statusPublished - Oct 2009

Fingerprint

Dive into the research topics of 'Accurate heat transfer measurements using thermochromic liquid crystal, Part 2: application to a rotating disc'. Together they form a unique fingerprint.

Cite this