Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz-Fritsch-Bobbitt reaction with non-activated and moderately-activated systems

Marco Mottinelli, Mathew P. Leese, Barry V.L. Potter

Research output: Contribution to journalArticle

3 Citations (Scopus)


Background: 1,2,3,4-Tetrahydroisoquinolines (THIQs) are common motifs in alkaloids and in medicinal chemistry. Synthetic access to THIQs via the Pomeranz-Fritsch-Bobbit (PFB) methodology using mineral acids for deactivated, electron-poor aromatic systems, is scarcely represented in the literature. Here, the factors controlling the regiochemical outcome of cyclization are evaluated. Results: A double reductive alkylation was telescoped into a one-pot reaction delivering good to excellent yields of desired aminoacetals for cyclization. Cyclization of activated systems proceeded smoothly under standard PFB conditions, but for non-activated systems the use of HClO4 alone was effective. When cyclization was possible in both para- and ortho-positions to the substituent, 7-substituted derivatives were formed with significant amounts of 5-substituted byproduct. The formation of the 4-hydroxy-THIQs vs the 4-methoxy-THIQ products could be controlled through modification of the reaction concentration. In addition, while a highly-activated system exclusively cyclized to the indole, this seems generally highly disfavored. When competition between 6-and 7-ring formation was investigated in non-activated systems, 5,7,8,13-tetrahydro-6,13-methanodibenzo[c,f]azonine was exclusively obtained. Furthermore, selective ring closure in the para-position could be achieved under standard PFB conditions, while a double ring closure could be obtained utilizing HClO4. Conclusion: Reactivity differences in aminoacetal precursors can be employed to control cyclization using the PFB methodology. It is now possible to select confidently the right conditions for the synthesis of N-aryl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines.

Original languageEnglish
Pages (from-to)1871-1879
Number of pages9
JournalBeilstein Journal of Organic Chemistry
Publication statusPublished - 6 Sep 2017



  • Cyclization
  • Pomeranz-Fritsch
  • Steroidomimetic
  • Synthesis
  • Tetrahydroisoquinoline

ASJC Scopus subject areas

  • Organic Chemistry

Cite this