TY - JOUR
T1 - Absence of a space-charge-derived enhancement of ionic conductivity in β|γ- heterostructured 7H- and 9R-AgI
AU - Morgan, B. J.
AU - Madden, P. A.
PY - 2012/7/11
Y1 - 2012/7/11
N2 - Extreme room temperature conductivity enhancements have been reported for nanocrystalline AgI of up to × 104 relative to bulk β-AgI (Guo et al 2005 Adv. Mater. 17 2815–9). These samples were identified as possessing 7H and 9R polytype structures, which can be considered as heterostructures composed of thin, commensurate layers in the β (wurtzite) and γ (zincblende) phases. It has been proposed that space-charge layer formation at β|γ-interfaces causes near complete disordering of the Ag+ sublattice in these polytypes, resulting in a massive intrinsic enhancement of ionic conductivity. We have performed molecular dynamics simulations of β- and γ-AgI and mixed β|γ superlattices, to study the effect of heterostructuring on intrinsic defect populations and Ag+ transport. The ionic conductivities and Ag+ diffusion coefficients vary as β > 7H ≈ 9R ≈ 10L > γ. The β|γ-heterostructured polytypes show no enhancement in defect populations or Ag+ mobilities relative to the β-AgI phase, and instead behave as simple composites of β- and γ-AgI. This contradicts the proposal that the extreme conductivity enhancement observed for 7H and 9R polytypes is explained by extensive space-charge formation.
AB - Extreme room temperature conductivity enhancements have been reported for nanocrystalline AgI of up to × 104 relative to bulk β-AgI (Guo et al 2005 Adv. Mater. 17 2815–9). These samples were identified as possessing 7H and 9R polytype structures, which can be considered as heterostructures composed of thin, commensurate layers in the β (wurtzite) and γ (zincblende) phases. It has been proposed that space-charge layer formation at β|γ-interfaces causes near complete disordering of the Ag+ sublattice in these polytypes, resulting in a massive intrinsic enhancement of ionic conductivity. We have performed molecular dynamics simulations of β- and γ-AgI and mixed β|γ superlattices, to study the effect of heterostructuring on intrinsic defect populations and Ag+ transport. The ionic conductivities and Ag+ diffusion coefficients vary as β > 7H ≈ 9R ≈ 10L > γ. The β|γ-heterostructured polytypes show no enhancement in defect populations or Ag+ mobilities relative to the β-AgI phase, and instead behave as simple composites of β- and γ-AgI. This contradicts the proposal that the extreme conductivity enhancement observed for 7H and 9R polytypes is explained by extensive space-charge formation.
UR - http://dx.doi.org/10.1088/0953-8984/24/27/275303
U2 - 10.1088/0953-8984/24/27/275303
DO - 10.1088/0953-8984/24/27/275303
M3 - Article
SN - 0953-8984
VL - 24
SP - 275303
JO - Journal of Physics-Condensed Matter
JF - Journal of Physics-Condensed Matter
IS - 27
ER -