Projects per year
Abstract
We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way towards a first-principles understanding of phase-change physics beyond binary switching.
Original language | English |
---|---|
Pages (from-to) | 14223–14230 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 7 |
Issue number | 26 |
Early online date | 23 Jun 2015 |
DOIs | |
Publication status | Published - 8 Jul 2015 |
Keywords
- brain-inspired/neuromorphic computing
- phase-change materials
- computational modelling
- ab initio molecular-dynamics simulation
- electronic synapse
Fingerprint
Dive into the research topics of 'Ab initio molecular-dynamics simulation of neuromorphic computing in phase-change memory materials'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P. (PI), Burrows, A. (CoI), Lewis, D. (CoI), Marken, F. (CoI), Parker, S. (CoI), Walsh, A. (CoI) & Wilson, C. (CoI)
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council
Datasets
-
Data for Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials
Skelton, J. (Creator), Loke, D. (Creator), Lee, T. (Creator) & Elliott, S. (Creator), University of Bath, 4 Jun 2015
DOI: 10.15125/BATH-00098
Dataset
Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility