Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes

Research output: Contribution to journalArticle

Abstract

A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp)2]2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H3bpp]3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn–Teller distortion mode for high spin, which indicates that in [Fe(bpp)2]2+pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF4] or [PF6] anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T1/2, but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T1/2. One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required.

LanguageEnglish
Pages5204-5212
Number of pages9
JournalChemistry - A European Journal
Volume24
Issue number20
DOIs
StatusPublished - 6 Apr 2018

Fingerprint

Molecular mechanics
Metals
Ligands
Jahn-Teller effect
pyridine
Electron energy levels
Anions
Electrostatics

Keywords

  • angular overlap model
  • iron complexes
  • ligand field molecular mechanics
  • spin crossover
  • π-bonding

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{67204be7769647dabb60daba229c24d4,
title = "Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes",
abstract = "A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp)2]2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H3bpp]3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn–Teller distortion mode for high spin, which indicates that in [Fe(bpp)2]2+pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF4]− or [PF6]− anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T1/2, but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T1/2. One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required.",
keywords = "angular overlap model, iron complexes, ligand field molecular mechanics, spin crossover, π-bonding",
author = "Deeth, {Robert J.} and Halcrow, {Malcolm A.} and {Kershaw Cook}, {Laurence J.} and Raithby, {Paul R.}",
year = "2018",
month = "4",
day = "6",
doi = "10.1002/chem.201704558",
language = "English",
volume = "24",
pages = "5204--5212",
journal = "Chemistry - A European Journal",
issn = "0947-6539",
publisher = "Wiley-Blackwell",
number = "20",

}

TY - JOUR

T1 - Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes

AU - Deeth,Robert J.

AU - Halcrow,Malcolm A.

AU - Kershaw Cook,Laurence J.

AU - Raithby,Paul R.

PY - 2018/4/6

Y1 - 2018/4/6

N2 - A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp)2]2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H3bpp]3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn–Teller distortion mode for high spin, which indicates that in [Fe(bpp)2]2+pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF4]− or [PF6]− anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T1/2, but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T1/2. One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required.

AB - A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp)2]2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H3bpp]3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn–Teller distortion mode for high spin, which indicates that in [Fe(bpp)2]2+pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF4]− or [PF6]− anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T1/2, but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T1/2. One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required.

KW - angular overlap model

KW - iron complexes

KW - ligand field molecular mechanics

KW - spin crossover

KW - π-bonding

UR - http://www.scopus.com/inward/record.url?scp=85045145433&partnerID=8YFLogxK

U2 - 10.1002/chem.201704558

DO - 10.1002/chem.201704558

M3 - Article

VL - 24

SP - 5204

EP - 5212

JO - Chemistry - A European Journal

T2 - Chemistry - A European Journal

JF - Chemistry - A European Journal

SN - 0947-6539

IS - 20

ER -