A uniqueness result for a simple superlinear eigenvalue problem

Michael Herrmann, Karsten Matthies

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)
21 Downloads (Pure)


We study the eigenvalue problem for a superlinear convolution operator in the special case of bilinear constitutive laws and establish the existence and uniqueness of a one-parameter family of nonlinear eigenfunctions under a topological shape constraint. Our proof uses a nonlinear change of scalar parameters and applies Krein-Rutmann arguments to a linear substitute problem. We also present numerical simulations and discuss the asymptotics of two limiting cases.
Original languageEnglish
Article number27
Number of pages29
JournalJournal of Nonlinear Science
Publication statusPublished - 23 Feb 2021


  • math.AP
  • nlin.PS


Dive into the research topics of 'A uniqueness result for a simple superlinear eigenvalue problem'. Together they form a unique fingerprint.

Cite this