A superconducting magnetic energy storage-emulator/battery supported dynamic voltage restorer

Anthony M. Gee, Francis Robinson, Weijia Yuan

Research output: Contribution to journalArticlepeer-review

89 Citations (SciVal)
205 Downloads (Pure)


This study examines the use of superconducting magnetic and battery hybrid energy storage to compensate grid voltage fluctuations. The superconducting magnetic energy storage system (SMES) has been emulated by a high current inductor to investigate a system employing both SMES and battery energy storage experimentally. The design of the laboratory prototype is described in detail, which consists of a series-connected three phase voltage source inverter used to regulate AC voltage, and two bidirectional DC/DC converters used to control energy storage system charge and discharge. 'DC bus level signaling' and 'voltage droop control' have been used to automatically control power from the magnetic energy storage system during short-duration, high power voltage sags, while the battery is used to provide power during longer-term, low power under-voltages. Energy storage system hybridisation is shown to be advantageous by reducing battery peak power demand compared with a battery-only system, and by improving long term voltage support capability compared with a SMES-only system. Consequently, the SMES/battery hybrid DVR can support both short term high-power voltage sags and long term undervoltages with significantly reduced superconducting material cost compared with a SMES-based system.

Original languageEnglish
Article number7567599
Pages (from-to)55-64
Number of pages10
JournalIEEE Transactions on Energy Conversion
Issue number1
Early online date14 Sept 2016
Publication statusPublished - 31 Mar 2017


  • Battery
  • Dynamic Voltage Restorer (DVR)
  • Energy Storage Integration
  • Sag
  • Superconducting Magnetic Energy Storage


Dive into the research topics of 'A superconducting magnetic energy storage-emulator/battery supported dynamic voltage restorer'. Together they form a unique fingerprint.

Cite this