A study of Penon weak n-categories Part 1: Monad interleaving

Research output: Contribution to journalArticle

Abstract

We give an alternative construction of the monad used by Penon
to define weak n-categories. Penon’s monad adds two pieces of extra structure
to an n-globular set: a magma structure, giving composition, and a contraction
structure, giving coherence. We add these two structures using an
interleaving approach, following the method used by Cheng to construct Leinster’s
operad for weak ω-categories. We conclude by using our construction
to give an explicit description of the n-globular operad for Penon weak
n-categories.
Original languageEnglish
Pages (from-to)197-259
Number of pages63
JournalCahiers de Topologie et Géométrie Différentielle Catégoriques
VolumeLIX
Issue number3
Publication statusPublished - 1 Jan 2018

Fingerprint

Monads
Interleaving
Operad
Contraction
Alternatives

Keywords

  • n-category
  • higher dimensional category
  • monad interleaving
  • monad
  • operad

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Geometry and Topology

Cite this

A study of Penon weak n-categories Part 1: Monad interleaving. / Cottrell, Thomas.

In: Cahiers de Topologie et Géométrie Différentielle Catégoriques, Vol. LIX, No. 3, 01.01.2018, p. 197-259.

Research output: Contribution to journalArticle

@article{3e6486df413c4ab08d70be628e8ac6ac,
title = "A study of Penon weak n-categories Part 1: Monad interleaving",
abstract = "We give an alternative construction of the monad used by Penonto define weak n-categories. Penon’s monad adds two pieces of extra structureto an n-globular set: a magma structure, giving composition, and a contractionstructure, giving coherence. We add these two structures using aninterleaving approach, following the method used by Cheng to construct Leinster’soperad for weak ω-categories. We conclude by using our constructionto give an explicit description of the n-globular operad for Penon weakn-categories.",
keywords = "n-category, higher dimensional category, monad interleaving, monad, operad",
author = "Thomas Cottrell",
year = "2018",
month = "1",
day = "1",
language = "English",
volume = "LIX",
pages = "197--259",
journal = "Cahiers de Topologie et G{\'e}om{\'e}trie Diff{\'e}rentielle Cat{\'e}goriques",
issn = "1245-530X",
number = "3",

}

TY - JOUR

T1 - A study of Penon weak n-categories Part 1: Monad interleaving

AU - Cottrell, Thomas

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We give an alternative construction of the monad used by Penonto define weak n-categories. Penon’s monad adds two pieces of extra structureto an n-globular set: a magma structure, giving composition, and a contractionstructure, giving coherence. We add these two structures using aninterleaving approach, following the method used by Cheng to construct Leinster’soperad for weak ω-categories. We conclude by using our constructionto give an explicit description of the n-globular operad for Penon weakn-categories.

AB - We give an alternative construction of the monad used by Penonto define weak n-categories. Penon’s monad adds two pieces of extra structureto an n-globular set: a magma structure, giving composition, and a contractionstructure, giving coherence. We add these two structures using aninterleaving approach, following the method used by Cheng to construct Leinster’soperad for weak ω-categories. We conclude by using our constructionto give an explicit description of the n-globular operad for Penon weakn-categories.

KW - n-category

KW - higher dimensional category

KW - monad interleaving

KW - monad

KW - operad

M3 - Article

VL - LIX

SP - 197

EP - 259

JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques

JF - Cahiers de Topologie et Géométrie Différentielle Catégoriques

SN - 1245-530X

IS - 3

ER -