A Review of Self-Healing Concrete for Damage Management of Structures

Nele De Belie, Elke Gruyaert, Abir Al-Tabbaa, Paola Antonaci, Cornelia Baera, Diana Bajare, Aveline Darquennes, Robert Davies, Liberato Ferrara, Tony Jefferson, Chrysoula Litina, Bojan Miljevic, Anna Otlewska, Jonjaua Ranogajec, Marta Roig-Flores, Kevin Paine, Pawel Lukowski, Pedro Serna, Jean-Marc Tulliani, Snezana VuceticJianyun Wang, Henk Jonkers

Research output: Contribution to journalReview articlepeer-review

485 Citations (SciVal)

Abstract

The increasing concern for safety and sustainability of structures is calling for the development of smart self-healing materials and preventive repair methods. The appearance of small cracks (<300 µm in width) in concrete is almost unavoidable, not necessarily causing a risk of collapse for the structure, but surely impairing its functionality, accelerating its degradation, and diminishing its service life and sustainability. This review provides the state-of-the-art of recent developments of self-healing concrete, covering autogenous or intrinsic healing of traditional concrete followed by stimulated autogenous healing via use of mineral additives, crystalline admixtures or (superabsorbent) polymers, and subsequently autonomous self-healing mechanisms, i.e. via, application of micro-, macro-, or vascular encapsulated polymers, minerals, or bacteria. The (stimulated) autogenous mechanisms are generally limited to healing crack widths of about 100–150 µm. In contrast, most autonomous self-healing mechanisms can heal cracks of 300 µm, even sometimes up to more than 1 mm, and usually act faster. After explaining the basic concept for each self-healing technique, the most recent advances are collected, explaining the progress and current limitations, to provide insights toward the future developments. This review addresses the research needs required to remove hindrances that limit market penetration of self-healing concrete technologies.

Original languageEnglish
Article number1800074
Number of pages28
JournalAdvanced Materials Interfaces
Volume5
Issue number17
Early online date16 May 2018
DOIs
Publication statusPublished - 7 Sept 2018

Keywords

  • bacteria-assisted self-healing
  • concrete
  • mineral admixtures
  • mortar
  • polymers
  • self-healing

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A Review of Self-Healing Concrete for Damage Management of Structures'. Together they form a unique fingerprint.

Cite this