Abstract
We consider a rough differential equation with a non-linear damping drift term:
dY(t)=−|Y|m−1Y(t)dt+σ(Y(t))dX(t),
where X is a branched rough path of arbitrary regularity α>0, m>1 and where σ is smooth and satisfies an m and α-dependent growth property. We show a strong a priori bound for Y, which includes the "coming down from infinity" property, i.e. the bound on Y(t) for a fixed t>0 holds uniformly over all choices of initial datum Y(0). The method of proof builds on recent work by Chandra, Moinat and Weber on a priori bounds for the ϕ4 SPDE in arbitrary subcritical dimension. A key new ingredient is an extension of the algebraic framework which permits to derive an estimate on higher order conditions of a coherent controlled rough path in terms of the regularity condition at lowest level.
Original language | English |
---|---|
Pages (from-to) | 58-93 |
Number of pages | 35 |
Journal | Journal of Differential Equations |
Volume | 318 |
Issue number | 2 |
Early online date | 24 Feb 2022 |
DOIs | |
Publication status | Published - 5 May 2022 |
ASJC Scopus subject areas
- Analysis
- Applied Mathematics