A predator-prey reaction-diffusion system with nonlocal effects

S. A. Gourley, N. F. Britton

Research output: Contribution to journalArticlepeer-review

161 Citations (SciVal)


We consider a predator-prey system in the form of a coupled system of reaction-diffusion equations with an integral term representing a weighted average of the values of the prey density function, both in past time and space. In a limiting case the system reduces to the Lotka Volterra diffusion system with logistic growth of the prey. We investigate the linear stability of the coexistence steady state and bifurcations occurring from it, and expressions for some of the bifurcating solutions are constructed. None of these bifurcations can occur in the degenerate case when the nonlocal term is in fact local.

Original languageEnglish
Pages (from-to)297-333
Number of pages37
JournalJournal of Mathematical Biology
Issue number3
Publication statusPublished - 1996


  • Predator-prey
  • Reaction-diffusion
  • Time delay bifurcation pattern formation

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Mathematics (miscellaneous)


Dive into the research topics of 'A predator-prey reaction-diffusion system with nonlocal effects'. Together they form a unique fingerprint.

Cite this