Projects per year
Abstract
Current spatiotemporal deep learning approaches to Magnetic Resonance Fingerprinting (MRF) build artefact-removal models customised to a particular k-space subsampling pattern which is used for fast (compressed) acquisition. This may not be useful when the acquisition process is unknown during training of the deep learning model and/or changes during testing time. This paper proposes an iterative deep learning plug-and-play reconstruction approach to MRF which is adaptive to the forward acquisition process. Spatiotemporal image priors are learned by an image denoiser i.e. a Convolutional Neural Network (CNN), trained to remove generic white gaussian noise (not a particular subsampling artefact) from data. This CNN denoiser is then used as a data-driven shrinkage operator within the iterative reconstruction algorithm. This algorithm with the same denoiser model is then tested on two simulated acquisition processes with distinct subsampling patterns. The results show consistent de- aliasing performance against both acquisition schemes and accurate mapping of tissues’ quantitative bio-properties. Software available: https://github.com/ketanfatania/QMRI-PnP-Recon-POC
Original language | English |
---|---|
Publication status | Published - 17 Apr 2022 |
Event | IEEE International Symposium on Biomedical Imaging - Kolkata, India Duration: 17 Apr 2022 → … |
Conference
Conference | IEEE International Symposium on Biomedical Imaging |
---|---|
Abbreviated title | ISBI |
Country/Territory | India |
City | Kolkata |
Period | 17/04/22 → … |
Fingerprint
Dive into the research topics of 'A Plug-and-Play Approach to Multiparametric Quantitative MRI: Image Reconstruction using Pre-Trained Deep Denoisers'. Together they form a unique fingerprint.-
Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA) - 2.0
Cosker, D., Bilzon, J., Campbell, N., Cazzola, D., Colyer, S., Lutteroth, C., McGuigan, P., O'Neill, E., Proulx, M. & Yang, Y.
Engineering and Physical Sciences Research Council
1/11/20 → 31/10/25
Project: Research council
-
Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA)
Cosker, D., Bilzon, J., Campbell, N., Cazzola, D., Colyer, S., Fincham Haines, T., Hall, P., Kim, K. I., Lutteroth, C., McGuigan, P., O'Neill, E., Richardt, C., Salo, A., Seminati, E., Tabor, A. & Yang, Y.
Engineering and Physical Sciences Research Council
1/09/15 → 28/02/21
Project: Research council