TY - JOUR
T1 - A novel role for HNO in local and spreading vasodilatation in rat mesenteric resistance arteries
AU - Yuill, Kathryn H
AU - Yarova, Polina
AU - Kemp-Harper, B K
AU - Garland, C J
AU - Dora, K A
PY - 2011/5
Y1 - 2011/5
N2 - Nitric oxide-mediated vasodilatation has previously been attributed to the uncharged form of the molecule (NO center dot), but increasing evidence suggests that nitroxyl (HNO) may play a significant role in endothelium-dependent relaxation. The aim of this study was to investigate the mechanisms underlying HNO-mediated vasodilatation in phenylephrine pre-constricted pressurized (70mmHg) mesenteric arteries, and on membrane currents in isolated smooth muscle cells using whole cell and perforated patch clamp recordings. Angeli's salt (AS: nitroxyl donor), evoked concentration-dependent vasodilatation that was insensitive to the NO center dot scavengers carboxy-PTIO and hydroxocobalamin (HXC), but sensitive to either the HNO scavenger L-cysteine, K-channel blockers (4-AP and iberiotoxin), raised [K+](o), or inhibition of soluble guanylyl cyclase (ODQ). AS-evoked smooth muscle hyperpolarization significantly augmented K-V current in an ODQ sensitive manner, and also increased the BKCa current. Importantly, 30 mu M AS initiated conducted or spreading vasodilatation, and following blockade of endothelial K-channels (TRAM-34 and apamin), ACh was able to evoke similar L-cysteine-sensitive conducted dilatation. These data show that vasodilatation induced by HNO is mediated by both K-V and BKCa channels, and suggest a physiological role in vasodilatation through the vasculature.
AB - Nitric oxide-mediated vasodilatation has previously been attributed to the uncharged form of the molecule (NO center dot), but increasing evidence suggests that nitroxyl (HNO) may play a significant role in endothelium-dependent relaxation. The aim of this study was to investigate the mechanisms underlying HNO-mediated vasodilatation in phenylephrine pre-constricted pressurized (70mmHg) mesenteric arteries, and on membrane currents in isolated smooth muscle cells using whole cell and perforated patch clamp recordings. Angeli's salt (AS: nitroxyl donor), evoked concentration-dependent vasodilatation that was insensitive to the NO center dot scavengers carboxy-PTIO and hydroxocobalamin (HXC), but sensitive to either the HNO scavenger L-cysteine, K-channel blockers (4-AP and iberiotoxin), raised [K+](o), or inhibition of soluble guanylyl cyclase (ODQ). AS-evoked smooth muscle hyperpolarization significantly augmented K-V current in an ODQ sensitive manner, and also increased the BKCa current. Importantly, 30 mu M AS initiated conducted or spreading vasodilatation, and following blockade of endothelial K-channels (TRAM-34 and apamin), ACh was able to evoke similar L-cysteine-sensitive conducted dilatation. These data show that vasodilatation induced by HNO is mediated by both K-V and BKCa channels, and suggest a physiological role in vasodilatation through the vasculature.
UR - http://www.scopus.com/inward/record.url?scp=78650321894&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1089/ars.2010.3279
U2 - 10.1089/ars.2010.3279
DO - 10.1089/ars.2010.3279
M3 - Article
SN - 1523-0864
VL - 14
SP - 1625
EP - 1635
JO - Antioxidants & Redox Signaling
JF - Antioxidants & Redox Signaling
IS - 9
ER -