TY - JOUR
T1 - A novel assay to measure B cell responses to keyhole limpet haemocyanin vaccination in healthy volunteers and subjects with systemic lupus erythematosus
AU - Ferbas, J.
AU - Belouski, S.S.
AU - Horner, M.
AU - Kaliyaperumal, A.
AU - Chen, L.
AU - Boyce, M.
AU - Colaço, C.B.
AU - Mchugh, N.
AU - Quick, V.
AU - Nicholl, R.J.
AU - Siu, G.
AU - Chung, J.
PY - 2013/8/1
Y1 - 2013/8/1
N2 - The aim of the study was to characterize performance of a complementary set of assays to measure antigen-specific immune responses in subjects immunized with a neoantigen. Healthy volunteers (HV) (n = 8) and patients with systemic lupus erythematosus (SLE) (n = 6) were immunized with keyhole limpet haemocyanin (KLH) on days 1 and 29. Serum antibodies were detected using a flow cytometric bead array (CBA) that multiplexed the KLH response alongside pre-existing anti-tetanus antibodies. Peripheral blood mononuclear cells were studied by B cell ELISPOT. These assays were built upon precedent assay development in cynomolgus monkeys, which pointed towards their utility in humans. Primary anti-KLH IgG responses rose to a mean of 65-93-fold above baseline for HV and SLE patients, respectively, and secondary responses rose to a mean of 260-170-fold above baseline. High levels of anti-tetanus IgG were detected in pre-immunization samples and their levels did not change over the course of study. Anti-KLH IgG1-4 subclasses were characterized by a predominant IgG1 response, with no significant differences in subclass magnitude or distribution between HV and SLE subjects. Anti-KLH IgM levels were detectable, although the overall response was lower. IgM was not detected in two SLE subjects whodid generate an IgG response. All subjects responded to KLH by B cell ELISPOT, with no significant differences observed between HV and SLE subjects. The CBA and B cell ELISPOT assays reliably measured anti-KLH B cell responses, supporting use of this approach and these assays to assess the pharmacodynamic and potential safety impact of marketed/investigational immune-therapeutics.
AB - The aim of the study was to characterize performance of a complementary set of assays to measure antigen-specific immune responses in subjects immunized with a neoantigen. Healthy volunteers (HV) (n = 8) and patients with systemic lupus erythematosus (SLE) (n = 6) were immunized with keyhole limpet haemocyanin (KLH) on days 1 and 29. Serum antibodies were detected using a flow cytometric bead array (CBA) that multiplexed the KLH response alongside pre-existing anti-tetanus antibodies. Peripheral blood mononuclear cells were studied by B cell ELISPOT. These assays were built upon precedent assay development in cynomolgus monkeys, which pointed towards their utility in humans. Primary anti-KLH IgG responses rose to a mean of 65-93-fold above baseline for HV and SLE patients, respectively, and secondary responses rose to a mean of 260-170-fold above baseline. High levels of anti-tetanus IgG were detected in pre-immunization samples and their levels did not change over the course of study. Anti-KLH IgG1-4 subclasses were characterized by a predominant IgG1 response, with no significant differences in subclass magnitude or distribution between HV and SLE subjects. Anti-KLH IgM levels were detectable, although the overall response was lower. IgM was not detected in two SLE subjects whodid generate an IgG response. All subjects responded to KLH by B cell ELISPOT, with no significant differences observed between HV and SLE subjects. The CBA and B cell ELISPOT assays reliably measured anti-KLH B cell responses, supporting use of this approach and these assays to assess the pharmacodynamic and potential safety impact of marketed/investigational immune-therapeutics.
UR - http://www.scopus.com/inward/record.url?scp=84880683849&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1111/bcp.12172
U2 - 10.1111/bcp.12172
DO - 10.1111/bcp.12172
M3 - Article
AN - SCOPUS:84880683849
SN - 0306-5251
VL - 76
SP - 188
EP - 202
JO - British Journal Of Clinical Pharmacology
JF - British Journal Of Clinical Pharmacology
IS - 2
ER -