Projects per year
Abstract
Rim seals are fitted at the periphery of the stator and rotor disks to reduce the adverse effects of hot gas ingress on highly stressed turbine components limited by temperature. Ingress is induced by rotational effects such as disk pumping, as well as by asymmetric pressure-driven unsteady phenomena. These influences superpose to form a complex flow-physics problem that is a challenge for computational fluid dynamics. Engine designers typically use practical low-order models that require empirical validation and correlating parameters. This paper identifies the swirl ratio in the mainstream annulus as a dominant characterizing parameter to predict ingress. This is a new interpretation that is supported by extending a low-order model based on turbulent transport using an effective eddy mixing length based on the difference in swirl between the annulus and seal clearance. Experimental measurements were made using a 1.5-stage turbine rig at low Reynolds number. The influence of annulus swirl ratio was investigated over a range of flow conditions and two rim-seal geometries, with the ingress quantified using CO 2tracer concentration in the sealing flow. The concentration data were complemented by measurements in the annulus using a five-hole aerodynamic probe.
Original language | English |
---|---|
Article number | 111005 |
Journal | Journal of Engineering for Gas Turbines and Power: Transactions of the ASME |
Volume | 144 |
Issue number | 11 |
Early online date | 2 Sept 2022 |
DOIs | |
Publication status | Published - 30 Nov 2022 |
Bibliographical note
Funding Information:Engineering and Physical Sciences Research Council (Grant No. EP/J014826/1;
Fingerprint
Dive into the research topics of 'A New Interpretation of Hot Gas Ingress Through Turbine Rim Seals Influenced by Mainstream Annulus Swirl'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Experimental and Theoretical Modelling of Hot Gas Ingestion through Gas-Turbine Rim Seals
Lock, G. (PI), Robinson, K. (CoI), Sangan, C. (CoI) & Wilson, M. (CoI)
Engineering and Physical Sciences Research Council
12/02/13 → 10/08/16
Project: Research council