TY - JOUR
T1 - A New Image Reconstruction Strategy for Capacitively Coupled Electrical Impedance Tomography
AU - Wu, Yimin
AU - Jiang, Y
AU - Ji, H
AU - Wang, B
AU - Huang, Z
AU - Soleimani, Manuchehr
N1 - This work was supported in part by the National Natural Science Foundation of China under Grant 62201502, in part by the Natural Science Foundation of Zhejiang Province under Grant LQ22F030001 and in part by the State Key Laboratory of Industrial Control Technology (Zhejiang University) under Grant ICT2023A09.
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Capacitively coupled electrical impedance tomography (CCEIT) is an attractive improvement of electrical resistance tomography (ERT) that offers contactless measurement and utilizes both the real and imaginary parts of the impedance for monitoring conductive gas-liquid two-phase flows in the industry. The conventional CCEIT adopts the finite element method under the benchmark of conductive liquid background to obtain the sensitivity matrices, which has been validated effective in ERT for the usage of the real part information. However, few researches on the usage of the imaginary part information of the conductive fluid have been reported. More research work should be undertaken to seek the most effective sensitivity calculation benchmark for the imaginary part utilization in CCEIT. In this work, the usage of the imaginary part information under different sensitivity calculation benchmarks is studied and a new image reconstruction strategy is proposed for CCEIT. By comparing the imaginary part sensitivity matrices and the corresponding imaging performance under different backgrounds, the benchmark that can make better use of the imaginary part information is determined. With the determined benchmark, a new image reconstruction strategy of CCEIT, which utilizes the respective effective benchmarks for the image reconstruction of the two parts of the fluid impedance, and employs a novel hybrid image fusion method to obtain the final image, is presented. Research results show that the benchmark of non-conductive gas background is more effective for the usage of the imaginary part information of the conductive gas-liquid two-phase flow. And the experimental results demonstrate the effectiveness of the proposed strategy in obtaining high-quality images. Compared with the conventional image reconstruction strategy of CCEIT, the proposed strategy has better imaging performance. This research provides valuable experience in utilizing the imaginary part information of the fluid impedance and lays a good foundation for the further development of CCEIT.
AB - Capacitively coupled electrical impedance tomography (CCEIT) is an attractive improvement of electrical resistance tomography (ERT) that offers contactless measurement and utilizes both the real and imaginary parts of the impedance for monitoring conductive gas-liquid two-phase flows in the industry. The conventional CCEIT adopts the finite element method under the benchmark of conductive liquid background to obtain the sensitivity matrices, which has been validated effective in ERT for the usage of the real part information. However, few researches on the usage of the imaginary part information of the conductive fluid have been reported. More research work should be undertaken to seek the most effective sensitivity calculation benchmark for the imaginary part utilization in CCEIT. In this work, the usage of the imaginary part information under different sensitivity calculation benchmarks is studied and a new image reconstruction strategy is proposed for CCEIT. By comparing the imaginary part sensitivity matrices and the corresponding imaging performance under different backgrounds, the benchmark that can make better use of the imaginary part information is determined. With the determined benchmark, a new image reconstruction strategy of CCEIT, which utilizes the respective effective benchmarks for the image reconstruction of the two parts of the fluid impedance, and employs a novel hybrid image fusion method to obtain the final image, is presented. Research results show that the benchmark of non-conductive gas background is more effective for the usage of the imaginary part information of the conductive gas-liquid two-phase flow. And the experimental results demonstrate the effectiveness of the proposed strategy in obtaining high-quality images. Compared with the conventional image reconstruction strategy of CCEIT, the proposed strategy has better imaging performance. This research provides valuable experience in utilizing the imaginary part information of the fluid impedance and lays a good foundation for the further development of CCEIT.
U2 - 10.1088/1361-6501/ad0f10
DO - 10.1088/1361-6501/ad0f10
M3 - Article
SN - 0957-0233
JO - Measurement Science and Technology
JF - Measurement Science and Technology
ER -