Abstract
This paper demonstrates a multi-source energy harvester that is able to utilize simultaneously both piezoelectric and pyroelectric effects in lead magnesium niobate-lead titanate (PMN-PT) single crystal. The paper presents a study of PMN-PT single crystal with a (67:33) composition grown in our laboratory via a vertical gradient freeze method without any flux. The performance of the piezoelectric and pyroelectric energy harvester using unimorph device structure was evaluated via modeling and experiment. The theoretical study was implemented based on a distributed parameter electromechanical model and the modelling procedure was approximated using finite element analysis to predict the electromechanical behavior of the harvester. The maximum power density at a resonance frequency of 50 Hz and optimum resistance of 2 MΩ was 16.7 nW/(g2 cm3) under a 1 g acceleration of vibration. The measured values of electrical output parameters were in good agreement with theoretical and modelling results using MATLAB and COMSOL Multiphysics, respectively. By using the pyroelectric effect along with the piezoelectric effect, the output voltage of the energy harvester was found to be enhanced at the optimum resistance and specific frequency values. It was noticed that the output voltage was increased monotonically with temperature-difference (ΔT) and reaches up to 180 % of its original value under temperature difference of 1.7 °C at a frequency value of 49 Hz.
Original language | English |
---|---|
Pages (from-to) | 10020-10030 |
Number of pages | 11 |
Journal | Journal of Materials Science-Materials in Electronics |
Volume | 27 |
Issue number | 10 |
Early online date | 2 Jun 2016 |
DOIs | |
Publication status | Published - Oct 2016 |
Fingerprint
Dive into the research topics of 'A multisource energy harvesting utilizing highly efficient ferroelectric PMN-PT single crystal'. Together they form a unique fingerprint.Profiles
-
Chris Bowen
- Department of Mechanical Engineering - Professor
- Faculty of Engineering and Design - Associate Dean (Research)
- Centre for Sustainable Chemical Technologies (CSCT)
- Centre for Nanoscience and Nanotechnology
- Institute for Mathematical Innovation (IMI)
- Institute of Sustainability and Climate Change
- Centre for Integrated Materials, Processes & Structures (IMPS)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff