A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda

Philipp A. Trotter, Nathanial J. Cooper, Peter R. Wilson

Research output: Contribution to journalArticle

Abstract

While electricity access is lowest in developing countries, the academic literature on generation expansion planning (GEP) has been informed almost exclusively by challenges in industrialised countries. This paper presents the first multi-objective, long-term energy planning optimisation model tailored towards national power systems with little existing power infrastructure. It determines the location, type, capacity and timing of power system infrastructure additions. Specifically, three novel generalisations of standard generation planning are introduced: (1) an expansion of the demand constraints to allow for industrial and household electrification rates below 100%, (2) a minimisation of sub-national energy access inequality in conjunction with minimising system costs considering environmental constraints, and (3) an integration of distribution infrastructure, explicitly including both on-grid and off-grid electrification. Using a specifically designed solution algorithm based on the ε-constraint method, the model was successfully applied to the previously unexplored Ugandan national power system case. The results suggest that while it is cost-optimal to maintain highly unequal sub-national access patterns to meet Uganda's official 80% electrification target in 2040, equal access rates across all districts can be achieved by increasing discounted system cost by only 3%. High optimal shares of locationally flexible on-grid and off-grid solar energy enable cheap sub-national shifts of generation capapcity. This paper strongly challenges the Ugandan government's nuclear energy and largely grid-based electrification expansion plans. Instead, it calls for solar concentrated power as a baseload option in the future and a focus on off-grid electrification which the model selects for the majority of household connections in 2040, even in a high-demand scenario.

LanguageEnglish
Pages288-312
Number of pages25
JournalApplied Energy
Volume243
Early online date5 Apr 2019
DOIs
StatusPublished - 1 Jun 2019

Keywords

  • Generation expansion problem (GEP)
  • Long-term energy planning
  • Multi-objective mixed integer linear programming
  • On-grid versus off-grid electrification
  • Solar Concentrated Power
  • Sub-Saharan Africa

ASJC Scopus subject areas

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Cite this

@article{50d3447df6ed461381d727380a993943,
title = "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda",
abstract = "While electricity access is lowest in developing countries, the academic literature on generation expansion planning (GEP) has been informed almost exclusively by challenges in industrialised countries. This paper presents the first multi-objective, long-term energy planning optimisation model tailored towards national power systems with little existing power infrastructure. It determines the location, type, capacity and timing of power system infrastructure additions. Specifically, three novel generalisations of standard generation planning are introduced: (1) an expansion of the demand constraints to allow for industrial and household electrification rates below 100{\%}, (2) a minimisation of sub-national energy access inequality in conjunction with minimising system costs considering environmental constraints, and (3) an integration of distribution infrastructure, explicitly including both on-grid and off-grid electrification. Using a specifically designed solution algorithm based on the ε-constraint method, the model was successfully applied to the previously unexplored Ugandan national power system case. The results suggest that while it is cost-optimal to maintain highly unequal sub-national access patterns to meet Uganda's official 80{\%} electrification target in 2040, equal access rates across all districts can be achieved by increasing discounted system cost by only 3{\%}. High optimal shares of locationally flexible on-grid and off-grid solar energy enable cheap sub-national shifts of generation capapcity. This paper strongly challenges the Ugandan government's nuclear energy and largely grid-based electrification expansion plans. Instead, it calls for solar concentrated power as a baseload option in the future and a focus on off-grid electrification which the model selects for the majority of household connections in 2040, even in a high-demand scenario.",
keywords = "Generation expansion problem (GEP), Long-term energy planning, Multi-objective mixed integer linear programming, On-grid versus off-grid electrification, Solar Concentrated Power, Sub-Saharan Africa",
author = "Trotter, {Philipp A.} and Cooper, {Nathanial J.} and Wilson, {Peter R.}",
year = "2019",
month = "6",
day = "1",
doi = "10.1016/j.apenergy.2019.03.178",
language = "English",
volume = "243",
pages = "288--312",
journal = "Applied Energy",
issn = "0306-2619",
publisher = "Elsevier",

}

TY - JOUR

T1 - A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda

AU - Trotter, Philipp A.

AU - Cooper, Nathanial J.

AU - Wilson, Peter R.

PY - 2019/6/1

Y1 - 2019/6/1

N2 - While electricity access is lowest in developing countries, the academic literature on generation expansion planning (GEP) has been informed almost exclusively by challenges in industrialised countries. This paper presents the first multi-objective, long-term energy planning optimisation model tailored towards national power systems with little existing power infrastructure. It determines the location, type, capacity and timing of power system infrastructure additions. Specifically, three novel generalisations of standard generation planning are introduced: (1) an expansion of the demand constraints to allow for industrial and household electrification rates below 100%, (2) a minimisation of sub-national energy access inequality in conjunction with minimising system costs considering environmental constraints, and (3) an integration of distribution infrastructure, explicitly including both on-grid and off-grid electrification. Using a specifically designed solution algorithm based on the ε-constraint method, the model was successfully applied to the previously unexplored Ugandan national power system case. The results suggest that while it is cost-optimal to maintain highly unequal sub-national access patterns to meet Uganda's official 80% electrification target in 2040, equal access rates across all districts can be achieved by increasing discounted system cost by only 3%. High optimal shares of locationally flexible on-grid and off-grid solar energy enable cheap sub-national shifts of generation capapcity. This paper strongly challenges the Ugandan government's nuclear energy and largely grid-based electrification expansion plans. Instead, it calls for solar concentrated power as a baseload option in the future and a focus on off-grid electrification which the model selects for the majority of household connections in 2040, even in a high-demand scenario.

AB - While electricity access is lowest in developing countries, the academic literature on generation expansion planning (GEP) has been informed almost exclusively by challenges in industrialised countries. This paper presents the first multi-objective, long-term energy planning optimisation model tailored towards national power systems with little existing power infrastructure. It determines the location, type, capacity and timing of power system infrastructure additions. Specifically, three novel generalisations of standard generation planning are introduced: (1) an expansion of the demand constraints to allow for industrial and household electrification rates below 100%, (2) a minimisation of sub-national energy access inequality in conjunction with minimising system costs considering environmental constraints, and (3) an integration of distribution infrastructure, explicitly including both on-grid and off-grid electrification. Using a specifically designed solution algorithm based on the ε-constraint method, the model was successfully applied to the previously unexplored Ugandan national power system case. The results suggest that while it is cost-optimal to maintain highly unequal sub-national access patterns to meet Uganda's official 80% electrification target in 2040, equal access rates across all districts can be achieved by increasing discounted system cost by only 3%. High optimal shares of locationally flexible on-grid and off-grid solar energy enable cheap sub-national shifts of generation capapcity. This paper strongly challenges the Ugandan government's nuclear energy and largely grid-based electrification expansion plans. Instead, it calls for solar concentrated power as a baseload option in the future and a focus on off-grid electrification which the model selects for the majority of household connections in 2040, even in a high-demand scenario.

KW - Generation expansion problem (GEP)

KW - Long-term energy planning

KW - Multi-objective mixed integer linear programming

KW - On-grid versus off-grid electrification

KW - Solar Concentrated Power

KW - Sub-Saharan Africa

UR - http://www.scopus.com/inward/record.url?scp=85063864526&partnerID=8YFLogxK

U2 - 10.1016/j.apenergy.2019.03.178

DO - 10.1016/j.apenergy.2019.03.178

M3 - Article

VL - 243

SP - 288

EP - 312

JO - Applied Energy

T2 - Applied Energy

JF - Applied Energy

SN - 0306-2619

ER -