A motion-compensated cone-beam CT using electrical impedance tomography imaging

T. Pengpan, N. D. Smith, W. Qiu, A. Yao, C. N. Mitchell, M. Soleimani

Research output: Contribution to journalArticlepeer-review

8 Citations (SciVal)

Abstract

Cone-beam CT (CBCT) is an imaging technique used in conjunction with radiation therapy. For example CBCT is used to verify the position of lung cancer tumours just prior to radiation treatment. The accuracy of the radiation treatment of thoracic and upper abdominal structures is heavily affected by respiratory movement. Such movement typically blurs the CBCT reconstruction and ideally should be removed. Hence motion-compensated CBCT has recently been researched for correcting image artefacts due to breathing motion. This paper presents a new dual-modality approach where CBCT is aided by using electrical impedance tomography (EIT) for motion compensation. EIT can generate images of contrasts in electrical properties. The main advantage of using EIT is its high temporal resolution. In this paper motion information is extracted from EIT images and incorporated directly in the CBCT reconstruction. In this study synthetic moving data are generated using simulated and experimental phantoms. The paper demonstrates that image blur, created as a result of motion, can be reduced through motion compensation with EIT.
Original languageEnglish
Pages (from-to)19-34
JournalPhysiological Measurement
Volume32
Issue number1
Early online date19 Nov 2010
DOIs
Publication statusPublished - Jan 2011

Fingerprint

Dive into the research topics of 'A motion-compensated cone-beam CT using electrical impedance tomography imaging'. Together they form a unique fingerprint.

Cite this