Abstract
Conflicts between laws can readily arise in situations governed by different laws, a case in point being when the context of an inferior law (or set of regulations) is altered through revision of a superior law. Being able to detect these conflicts automatically and resolve them, for example by proposing revisions to one of the modelled laws or policies, would be highly beneficial for legislators, legal departments of organizations or anybody having to incorporate legal requirements into their own procedures. In this paper we present a model based approach for detecting and finding legal conflicts through a combination of a formal model of legal specifications and a computational model based on answer set programming and inductive logic programming. Given specific scenarios (descriptions of courses of action), our model-based approach can automatically detect whether these scenarios could lead to contradictory outcomes in the different legal specifications. Using these conflicts as use cases, we apply inductive logic programming (ILP) to learn revisions to the legal component that is the source of the conflict. We illustrate our approach using a case-study where a university has to change its studentship programme after the government brings in new immigration regulations.
Original language | English |
---|---|
Title of host publication | ICAIL '13 Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law |
Place of Publication | NY, USA |
Publisher | Association for Computing Machinery |
Pages | 202-206 |
Number of pages | 5 |
ISBN (Print) | 9781450320801 |
DOIs | |
Publication status | Published - 2013 |
Event | 14th International Conference on Artificial Intelligence and Law, ICAIL 2013 - Rome, Italy Duration: 10 Jun 2013 → 14 Jun 2013 |
Conference
Conference | 14th International Conference on Artificial Intelligence and Law, ICAIL 2013 |
---|---|
Country/Territory | Italy |
City | Rome |
Period | 10/06/13 → 14/06/13 |