Abstract
Background. Alzheimer’s Disease (AD) poses a major challenge as a neurodegenerative disorder, and early detection is critical for effective intervention. Magnetic resonance imaging (MRI) is a critical tool in AD research due to its availability and cost-effectiveness in clinical settings. Objective. This study aims to conduct a comprehensive analysis of machine learning (ML) methods for MRI-based biomarker selection and classification to investigate early cognitive decline in AD. The focus to discriminate between classifying healthy control (HC) participants who remained stable and those who developed mild cognitive impairment (MCI) within five years (unstable HC or uHC). Methods. 3-Tesla (3T) MRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies 3 (OASIS-3) were used, focusing on HC and uHC groups. Freesurfer’s recon-all and other tools were used to extract anatomical biomarkers from subcortical and cortical brain regions. ML techniques were applied for feature selection and classification, using the MATLAB Classification Learner (MCL) app for initial analysis, followed by advanced methods such as nested cross-validation and Bayesian optimization, which were evaluated within a Monte Carlo replication analysis as implemented in our customized pipeline. Additionally, polynomial regression-based data harmonization techniques were used to enhance ML and statistical analysis. In our study, ML classifiers were evaluated using performance metrics such as Accuracy (Acc), area under the receiver operating characteristic curve (AROC), F1-score, and a normalized Matthew’s correlation coefficient (MCC0). Results. Feature selection consistently identified biomarkers across ADNI and OASIS-3, with the entorhinal, hippocampus, lateral ventricle, and lateral orbitofrontal regions being the most affected. Classification results varied between balanced and imbalanced datasets and between ADNI and OASIS-3. For ADNI balanced datasets, the naíve Bayes model using z-score harmonization and ReliefF feature selection performed best (Acc = 69.17%, AROC = 77.73%, F1 = 69.21%, MCC’ = 69.28%). For OASIS-3 balanced datasets, SVM with zscore-corrected data outperformed others (Acc = 66.58%, AROC = 72.01%, MCC’ = 66.78%), while logistic regression had the best F1-score (66.68%). In imbalanced data, RUSBoost showed the strongest overall performance on ADNI (F1 = 50.60%, AROC = 81.54%) and OASIS-3 (MCC’ = 63.31%). Support vector machine (SVM) excelled on ADNI in terms of Acc (82.93%) and MCC’ (70.21%), while naïve Bayes performed best on OASIS-3 by F1 (42.54%) and AROC (70.33%). Conclusion. Data harmonization significantly improved the consistency and performance of feature selection and ML classification, with z-score harmonization yielding the best results. This study also highlights the importance of nested cross-validation (CV) to control overfitting and the potential of a semi-automatic pipeline for early AD detection using MRI, with future applications integrating other neuroimaging data to enhance prediction.
Original language | English |
---|---|
Article number | e18490 |
Journal | PeerJ |
Volume | 12 |
Issue number | 12 |
DOIs | |
Publication status | Published - 13 Dec 2024 |
Data Availability Statement
The following information was supplied regarding data availability:The MATLAB code are available in the Supplementary File.Acknowledgements
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.Funding
The data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). The authors were granted access to the Tier 2 High-Performance Computing resources provided by the Northern Ireland High Performance Computing (NI-HPC) facility funded by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant No. EP/T022175/1. Universiti Sains Malaysia and Ministry of Higher Education (MOHE) Malaysia (Scholarship Hadiah Latihan Persekutuan (HLP)) sponsored ALA and Universiti Teknologi PETRONAS supported this study. Roberto C. Sotero was supported by Grant 222300868 from the Alberta Innovates LevMax program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Keywords
- Alzheimer’s disease
- Data harmonization
- Feature selection
- Machine learning
- MRI
- Nested cross validation
- Neuroimaging
ASJC Scopus subject areas
- General Neuroscience
- General Biochemistry,Genetics and Molecular Biology
- General Agricultural and Biological Sciences