Projects per year
Abstract
In this paper we address the problem of the prohibitively large computational cost of existing Markov chain Monte Carlo methods for large--scale applications with high dimensional parameter spaces, e.g. in uncertainty quantification in porous media flow. We propose a new multilevel Metropolis-Hastings algorithm, and give an abstract, problem dependent theorem on the cost of the new multilevel estimator based on a set of simple, verifiable assumptions. For a typical model problem in subsurface flow, we then provide a detailed analysis of these assumptions and show significant gains over the standard Metropolis-Hastings estimator. Numerical experiments confirm the analysis and demonstrate the effectiveness of the method with consistent reductions of more than an order of magnitude in the cost of the multilevel estimator over the standard Metropolis-Hastings algorithm for tolerances ε<0.01.
Original language | English |
---|---|
Pages (from-to) | 1075-1108 |
Number of pages | 34 |
Journal | SIAM/ASA Journal on Uncertainty Quantification |
Volume | 3 |
Issue number | 1 |
Early online date | 3 Nov 2015 |
DOIs | |
Publication status | Published - 31 Dec 2015 |
Keywords
- multilevel Monte Carlo
- Metropolis-Hastings algorithm
- Bayesian inference
- pdes with random coecients
Fingerprint
Dive into the research topics of 'A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Multiscale Modelling of Aerospace Composites
Butler, R. (PI) & Scheichl, R. (CoI)
Engineering and Physical Sciences Research Council
6/01/14 → 5/02/18
Project: Research council
-
Multilevel Monte Carlo Methods for Elliptic Problems
Scheichl, R. (PI)
Engineering and Physical Sciences Research Council
1/07/11 → 30/06/14
Project: Research council