Abstract
A novel modelling framework is proposed for the analysis of aggregative games on an infinite-time horizon, assuming that players are subject to heterogeneous periodic constraints. A new aggregative equilibrium notion is presented and the strategic behaviour of the agents is analysed under a receding horizon paradigm. The evolution of the strategies predicted and implemented by the players over time is modelled through a discrete-time multi-valued dynamical system. By considering Lyapunov stability notions and applying limit and invariance results for set-valued correspondences, necessary conditions are derived for convergence of a receding horizon map to a periodic equilibrium of the aggregative game. This result is achieved for any (feasible) initial condition, thus ensuring implicit adaptivity of the proposed control framework to real-time variations in the number and parameters of players. Design and implementation of the proposed control strategy are discussed and an example of distributed control for data routing is presented, evaluating its performance in simulation.
Original language | English |
---|---|
Pages (from-to) | 191-204 |
Number of pages | 14 |
Journal | Annual Reviews in Control |
Volume | 45 |
Early online date | 18 May 2018 |
DOIs | |
Publication status | E-pub ahead of print - 18 May 2018 |
Keywords
- Aggregative games
- Distributed control
- Receding horizon control
ASJC Scopus subject areas
- Software
- Control and Systems Engineering