A cooperative coevolutionary algorithm for design of platform-based mass customized products

Li Li, G Q Huang, Stephen T Newman

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

As a new business model, mass customization (MC) intends to enable enterprises to comply with customer requirements at mass production efficiencies. A widely advocated approach to implement MC is platform product customization (PPC). In this approach, a product variant is derived from a given product platform to satisfy customer requirements. Adaptive PPC is such a PPC mode in which the given product platform has a modular architecture where customization is achieved by swapping standard modules and/or scaling modular components to formulate multiple product variants according to market segments and customer requirements. Adaptive PPC optimization includes structural configuration and parametric optimization. This paper presents a new method, namely, a cooperative coevolutionary algorithm (CCEA), to solve the two interrelated problems of structural configuration and parametric optimization in adaptive PPC. The performance of the proposed algorithm is compared with other methods through a set of computational experiments. The results show that CCEA outperforms the existing hierarchical evolutionary approaches, especially for large-scale problems tested in the experiments. From the experiments, it is also noticed that CCEA is slow to converge at the beginning of evolutionary process. This initial slow convergence property of the method improves its searching capability and ensures a high quality solution.
Original languageEnglish
Pages (from-to)507-519
Number of pages13
JournalJournal of Intelligent Manufacturing
Volume19
Issue number5
DOIs
Publication statusPublished - Oct 2008

Fingerprint Dive into the research topics of 'A cooperative coevolutionary algorithm for design of platform-based mass customized products'. Together they form a unique fingerprint.

  • Cite this