A Consistent Study of Metallicity Evolution at 0.8 lt z lt 2.6

E. Wuyts, J. Kurk, N. M. Förster Schreiber, R. Genzel, E. Wisnioski, K. Bandara, S. Wuyts, A. Beifiori, R. Bender, G. B. Brammer, A. Burkert, P. Buschkamp, C. M. Carollo, J. Chan, R. Davies, F. Eisenhauer, M. Fossati, S. K. Kulkarni, P. Lang, S. J. LillyD. Lutz, C. Mancini, J. T. Mendel, I. G. Momcheva, T. Naab, E. J. Nelson, A. Renzini, D. Rosario, R. P. Saglia, S. Seitz, R. M. Sharples, A. Sternberg, S. Tacchella, L. J. Tacconi, P. van Dokkum, D. J. Wilman

Research output: Contribution to journalArticlepeer-review

97 Citations (SciVal)


We present the correlations between stellar mass, star formation rate (SFR), and the [N II]/Hα flux ratio as an indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log (M */M ☉) = 9.0-11.5 from the LUCI, SINS/zC-SINF, and KMOS3D surveys. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and a uniform strong-line metallicity indicator. We find a constant slope at the low-mass end of the relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At a fixed mass and redshift, our data do not show a correlation between the [N II]/Hα ratio and SFR, which disagrees with the 0.2-0.3 dex offset in [N II]/Hα predicted by the "fundamental relation" between stellar mass, SFR, and metallicity discussed in recent literature. However, the overall evolution toward lower [N II]/Hα at earlier times does broadly agree with these predictions.
Original languageEnglish
Article numberL40
Number of pages6
JournalThe Astrophysical Journal Letters
Issue number2
Early online date26 Jun 2014
Publication statusPublished - 10 Jul 2014


  • galaxies: evolution
  • galaxies: high-redshift
  • infrared: galaxies


Dive into the research topics of 'A Consistent Study of Metallicity Evolution at 0.8 lt z lt 2.6'. Together they form a unique fingerprint.

Cite this