TY - JOUR
T1 - A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method
AU - Park, W
AU - Chaffin, D B
AU - Martin, B J
AU - Faraway, J J
N1 - ID number: ISI:000232456400023
PY - 2005
Y1 - 2005
N2 - Inspired by the generalized motor program (GMP) theory, this study presents a symbolic motion structure representation (SMSR) algorithm that identifies a basic spatial-temporal structure of a human motion. The algorithm resolves each joint angle-time trajectory of a multi-joint motion into a sequence of elemental motion segments and labels each motion segment with a symbol representing its shape ('U': monotonically increasing; 'D': monotonically decreasing; 'S': stationary). By concatenating symbols according to their order in time, the spatial-temporal structure of a joint angle-time trajectory is represented as a symbolic string. The structure of a multi-joint motion is then represented as a set of symbolic strings. A sample motion, whose structure is identified by the SMSR algorithm, can be generalized to produce an infinite number of similar motion variants. To generate a variant of a sample motion, segment boundary points of the sample motion are first relocated to new locations in the angle-time space, and then individual motion segments of the original joint angle trajectories are shifted and proportionally rescaled to fit the new segment boundary points. This motion generalization method provides a basis for developing GMP-based motion simulation models, and exploring ideas and hypotheses related to the GMP theory through simulation. As an application of the motion generalization method, a motion modification (MoM) algorithm is presented, which adapts existing reach motions for new target locations. Some examples generated by the MoM algorithm are illustrated. (c) 2004 Elsevier Ltd. All rights reserved.
AB - Inspired by the generalized motor program (GMP) theory, this study presents a symbolic motion structure representation (SMSR) algorithm that identifies a basic spatial-temporal structure of a human motion. The algorithm resolves each joint angle-time trajectory of a multi-joint motion into a sequence of elemental motion segments and labels each motion segment with a symbol representing its shape ('U': monotonically increasing; 'D': monotonically decreasing; 'S': stationary). By concatenating symbols according to their order in time, the spatial-temporal structure of a joint angle-time trajectory is represented as a symbolic string. The structure of a multi-joint motion is then represented as a set of symbolic strings. A sample motion, whose structure is identified by the SMSR algorithm, can be generalized to produce an infinite number of similar motion variants. To generate a variant of a sample motion, segment boundary points of the sample motion are first relocated to new locations in the angle-time space, and then individual motion segments of the original joint angle trajectories are shifted and proportionally rescaled to fit the new segment boundary points. This motion generalization method provides a basis for developing GMP-based motion simulation models, and exploring ideas and hypotheses related to the GMP theory through simulation. As an application of the motion generalization method, a motion modification (MoM) algorithm is presented, which adapts existing reach motions for new target locations. Some examples generated by the MoM algorithm are illustrated. (c) 2004 Elsevier Ltd. All rights reserved.
U2 - 10.1016/j.jbiomech.2004.09.035
DO - 10.1016/j.jbiomech.2004.09.035
M3 - Article
SN - 0021-9290
VL - 38
SP - 2321
EP - 2329
JO - 5th World Congress of Biomechanics Munich, Germany, 29 July - 4 August 2006
JF - 5th World Congress of Biomechanics Munich, Germany, 29 July - 4 August 2006
IS - 11
ER -