A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method

W Park, D B Chaffin, B J Martin, J J Faraway

Research output: Contribution to journalArticlepeer-review

16 Citations (SciVal)

Abstract

Inspired by the generalized motor program (GMP) theory, this study presents a symbolic motion structure representation (SMSR) algorithm that identifies a basic spatial-temporal structure of a human motion. The algorithm resolves each joint angle-time trajectory of a multi-joint motion into a sequence of elemental motion segments and labels each motion segment with a symbol representing its shape ('U': monotonically increasing; 'D': monotonically decreasing; 'S': stationary). By concatenating symbols according to their order in time, the spatial-temporal structure of a joint angle-time trajectory is represented as a symbolic string. The structure of a multi-joint motion is then represented as a set of symbolic strings. A sample motion, whose structure is identified by the SMSR algorithm, can be generalized to produce an infinite number of similar motion variants. To generate a variant of a sample motion, segment boundary points of the sample motion are first relocated to new locations in the angle-time space, and then individual motion segments of the original joint angle trajectories are shifted and proportionally rescaled to fit the new segment boundary points. This motion generalization method provides a basis for developing GMP-based motion simulation models, and exploring ideas and hypotheses related to the GMP theory through simulation. As an application of the motion generalization method, a motion modification (MoM) algorithm is presented, which adapts existing reach motions for new target locations. Some examples generated by the MoM algorithm are illustrated. (c) 2004 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)2321-2329
Number of pages9
Journal5th World Congress of Biomechanics Munich, Germany, 29 July - 4 August 2006
Volume38
Issue number11
DOIs
Publication statusPublished - 2005

Bibliographical note

ID number: ISI:000232456400023

Fingerprint

Dive into the research topics of 'A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method'. Together they form a unique fingerprint.

Cite this