TY - JOUR
T1 - A Comparative Plasmonic Study of Nanoporous and Evaporated Gold Films
AU - Ahl, Stefanie
AU - Cameron, Petra J
AU - Liu, Jing
AU - Knoll, Wolfgang
AU - Erlebacher, Jonah
AU - Yu, Fang
PY - 2008
Y1 - 2008
N2 - Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4-8.5 times more accessible surface area than EG films. Assemblies of streptavidin-latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11468-007-9048-5) contains supplementary material, which is available to authorized users.
AB - Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4-8.5 times more accessible surface area than EG films. Assemblies of streptavidin-latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11468-007-9048-5) contains supplementary material, which is available to authorized users.
UR - http://www.scopus.com/inward/record.url?scp=39049123221&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1007/s11468-007-9048-5
U2 - 10.1007/s11468-007-9048-5
DO - 10.1007/s11468-007-9048-5
M3 - Article
C2 - 19816537
SN - 1557-1963
VL - 3
SP - 13
EP - 20
JO - Plasmonics
JF - Plasmonics
IS - 1
ER -