البرد شدید الازعاج في المناخات شدیدة الحرارة: دراسة عن التبرید المفرط في المباني المكتبیة في قطر

Translated title of the contribution: EXTREME COLD DISCOMFORT IN EXTREME HOT CLIMATES, A STUDY OF BUILDING OVERCOOLING IN OFFICE BUILDINGS IN QATAR

Research output: Contribution to journalArticlepeer-review

Abstract

Indoor cold discomfort in Qatar due to “building overcooling” is increasing, as air-conditioning prevails, and global temperatures rise. Overcooling is not dependent only on the inappropriate design of cooling systems, but on “international” thermal comfort standards that are not customized for warm climates. International standards are unintentionally biased towards cooler climates and cultures, the application of which in warm climates result in colder indoor temperatures observed by building occupants and increased cooling energy demand. Overcooling is an over-expenditure of energy, resulting in uncomfortably cold indoor thermal conditions, and unnecessary carbon emissions. In this study, the analysis of field data from 6 office buildings in Doha in a range of indoor thermal conditions and investigation of overcooling on occupant comfort and building performance is conducted. The analysis uncovers over 35% of occupants state being uncomfortably cold and a consensus across the surveys highlight comfortable temperatures higher by 2°C from current setpoint temperatures. Greater occupant comfort and energy efficiency are found by increasing the indoor temperature setpoints investigated through thermal comfort analysis and energy simulation models. Around 50% decrease in occupant discomfort and a 15% decrease in cooling energy demand is found. Such an adjustment in Qatar would improve occupant comfort levels and reduce cooling energy demand throughout the existing office building stock

Translated title of the contributionEXTREME COLD DISCOMFORT IN EXTREME HOT CLIMATES, A STUDY OF BUILDING OVERCOOLING IN OFFICE BUILDINGS IN QATAR
Original languageArabic (Israel)
Pages (from-to)101-113
Number of pages13
JournalThe Journal of Engineering Research
Volume18
Issue number2
DOIs
Publication statusPublished - 28 Feb 2022

Keywords

  • Building energy
  • Extreme climates
  • Overcooling
  • Thermal comfort

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint

Dive into the research topics of 'EXTREME COLD DISCOMFORT IN EXTREME HOT CLIMATES, A STUDY OF BUILDING OVERCOOLING IN OFFICE BUILDINGS IN QATAR: دراسة عن التبرید المفرط في المباني المكتبیة في قطر'. Together they form a unique fingerprint.

Cite this