VSIMULATORS: Human Factors Simulation for Motion and Serviceability in the Built Environment

Project: Research council

Project Details


VSimulators is a worldwide unique facility for exploring how people experience motion and vibrations in the build environment, such as sway in tall buildings, vibration of lively floors, or movement of footbridges. The facility consists of a pair of simulators located at the Universities of Bath and Exeter providing complementary capability in mimicking motion and environmental factors in the built environment. Using hydraulic actuators driving a climate controlled room, the Bath machine can simulate biaxial movement at ultra-low frequencies with large amplitudes primarily to study comfort and health of occupants in tall and super tall buildings which are proliferating in cities across the world. The Exeter machine uses a 6-axis electric 'hexapod' actuation system supporting a rigid 4 meter square platform. This will simulate multi-axis motion primarily to study comfort of humans using footbridges, floors and grandstands vibrating in response to occupant dynamic forces. The Bath machine will incorporate peripheral video displays of internal and external environment, systems for sophisticated environmental control and measurement of occupant physiological and psychological reactions, while the Exeter machine will use sophisticated virtual reality and full capability for force identification and motion capture of occupants. Using shared equipment (e.g. treadmills, inertial sensors, optical motion capture) and technical support the complementary capabilities will be applied to research human-structure interaction (based upon human comfort, well-being and productivity), assisted mobility and rehabilitation and populate a spectrum of vibration serviceability guidance.
The facility will provide a worldwide unique capability available to researchers and practitioners from a range of industries and backgrounds. Together with this multi-disciplinary network of people, VSimulators' unique capability will transform what research we are able to do and how we carry out that research.
Effective start/end date1/05/1730/06/21

Collaborative partners


  • Engineering and Physical Sciences Research Council

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being

RCUK Research Areas

  • Civil engineering and built environment
  • Building Operation and Management
  • Structural Engineering


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.