Towards Zero Emissions Electric Aircraft through Superconducting DC Distribution Network

Project: Research council

Project Details

Description

Electrification of aviation will be central to achieve ambitious environmental targets for the reduction of carbon emission, fuel burn and noise. The UK Aviation Strategy 2050 sets out objectives to ensure a safe and secure way to travel, support growth while tackling environmental impacts. A current game-changing concept is hydrogen-powered electric aircraft. Airbus ZEROe concept aircraft enables investigation of hydrogen technologies that will shape the future zero-emission aircraft. Large-scale hydrogen-powered electric aircraft of multi-megawatt level have very high requirements on power density and efficiency of the on-board electric network. Liquid hydrogen offers a cryogenic environment for the electric network, which opens new opportunities for the use of superconductivity. A cryogenic and superconducting direct current (DC) distribution network is a key step for the development of large-scale hydrogen-powered electric aircraft due to its high efficiency, high-power density, and reduced impact on the overall weight of the aircraft.

The Fellowship aims to make an important contribution towards the development of large-scale hydrogen-powered electric aircraft by developing the first reliable high-power density and high efficiency cryogenic and superconducting DC distribution network. A cryogenic and superconducting direct current (DC) distribution network is attractive due to its high-power density, high efficiency, and reduced impact on the overall weight of the aircraft. This Fellowship will address the highly demanding safety and reliability requirements of the superconducting DC distribution network, necessary to ensure the supply to flight critical loads and to enable the safe recovery of the supply from any fault conditions. It will do so through a novel, powerful combination of numerical and experimental methods to deliver the first cryogenic hybrid DC circuit breaker combined with a superconducting fault current limiter (SFCL). By collaborating with Airbus, ATI FlyZero, IXYS UK Westcode Ltd., and University of Manchester, a pioneering method for the control and protection of the superconducting DC distribution network for large-scale hydrogen-powered electric aircraft will be demonstrated as a vital pathway to make the technology viable for future commercial zero emissions and low noise electric aircraft.
StatusActive
Effective start/end date1/09/2331/08/28

Funding

  • Engineering and Physical Sciences Research Council

RCUK Research Areas

  • Energy
  • Mechanical engineering
  • Systems engineering
  • Control Engineering
  • Electrical Motor and Drive Systems
  • Energy Efficiency

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.