Reclaiming Forgotten Cities - Turning cities from vulnerable spaces to healthy places for people

Project: Research council

Project Details

Description

RECLAIM is an innovative network to address complex problems and create sustainable, healthy, and liveable urban systems, resilient to climate-related hazards. RECLAIM will become an inclusive platform for continual exchange, and knowledge translation. Our network will connect and transform the 'forgotten cities' to be at the vanguard for environmental and economic advancement using participatory methods and green-blue-grey infrastructure (GBGI) to address societal and environmental challenges.

Our vision for RECLAIM is to create a multidisciplinary and cross-sectoral network, which brings together multiple areas of scientific expertise (engineering, ecology, social science), artists, designers, business, city authorities, policymakers and community groups. RECLAIM will act as a hub to rapidly disseminate best practice on GBGI design which takes account of the social and economic context, and the needs of local residents as well as the latest scientific evidence on designing multi-functional GBGI solutions. The network will develop common language, goals and methodology to ease the communication, spreading, and replicability of GBGI. It will focus on the forgotten cities, especially the smaller and/or economically disadvantaged urban areas and communities which have mostly been ignored in the implementation and assessment of GBGI, and making them part of the solution using a participatory approach. The geographical scope is pan-UK, covering some larger cities where good practice is already established (e.g. Liverpool, Glasgow, Newcastle) with smaller cities and less well-off areas in the northeast of England, north Wales, the Midlands and south-east England to test, co-design, engage and learn with their most disadvantaged communities. Disciplinary scope aims to bridge engineering, modelling, atmospheric chemistry, hydrology including marine, green infrastructure, urban art, urban design, and social sciences including science and technology studies.

The network has a central aim of addressing the levelling up agenda by incorporating both social justice issues and ecological quality into the design of multi-functional grey, green and blue space in cities, proposed as the means to ensure liveable cities which are sustainable and resilient to the future challenges. It will tackle this through six key objectives, which are delivered through a series of network actions: 1) Build a new multi-disciplinary network to share best practice and act as research leaders; 2) Undertake horizon scanning and knowledge synthesis to identify key gaps in knowledge and make recommendations to address them; 3) Conduct feasibility studies to comprehensively assess new and existing GBGI, and to address knowledge gaps; 4) Design, engage and learn with the public, fostering improved understanding of the wider benefits of green-blue-grey space, and educating the next generation on making our cities more sustainable and healthier places to live; 5) Train a new cohort of decision-makers and academics to embed multi-disciplinary thinking into future GBGI design, incorporating a mix of place-based approaches and scale-appropriate functional interventions; 6) Accelerate uptake of best practices by dissemination through activities designed to share best practice on urban planning and green and blue space design.

Underlying this are four cross-cutting themes which thread through all the network activities: Multifunctionality and systems thinking, Embedding aesthetics and people's needs into GBGI design, Upscaling and outscaling, and Capitalising on existing initiatives.
StatusActive
Effective start/end date1/03/2229/02/24

Funding

  • UK Research & Innovation

RCUK Research Areas

  • Civil engineering and built environment
  • Urban and Land Management

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.