Project Details
Description
The EPSRC Quantum Computing and Simulation Hub will enable the UK to be internationally leading in Quantum Computing and Simulation. It will drive progress toward practical quantum computers and usher in the era where they will have revolutionary impact on real-world challenges in a range of multidisciplinary themes including discovery of novel drugs and new materials, through to quantum-enhanced machine learning, information security and even carbon reduction through optimised resource usage.
The Hub will bring together leading quantum research teams across 17 universities, into a collaboration with more than 25 national and international commercial, governmental and academic entities. It will address critical research challenges, and work with partners to accelerate the development of quantum computing in the UK. It will foster a generation of UK-based scientists and engineers equipped with the new skill sets needed to make the UK into a global centre for innovation as the quantum sector emerges. The Hub will engage with government and citizens so that there is a wide appreciation of the potential of this transformative technology, and a broad understanding of the issues in its adoption.
Hub research will focus on the hardware and software that will be needed for future quantum computers and simulators. In hardware we will advance a range of different platforms, encompassing simulation, near term quantum computers, and longer term fully scalable machines. In software the Hub will develop fundamental techniques, algorithms, new applications and means to verify the correct operation of any future machine. Hardware and software research will be closely integrated in order to provide a full-stack capability for future machines, enabled by the broad expertise of our partners. We will also study the architecture of these machines, and develop emulation techniques to accelerate their development.
Success will require close engagement with a wide range of commercial and government organisations. Our initial partners include finance (OSI), suppliers (Gooch & Housego, Oxford Instruments, E6), integrators and developers (OQC, QM, CQC, QxBranch, D-Wave), users from industry (Rolls-Royce, Johnson Matthey, GSK, BT, BP, TrakM8, Airbus, QinetiQ) and government (DSTL, NCSC), and other research institutions (NPL, ATI, Heilbronn, Fraunhofer). We will build on this strong network using Industry Days, Hackathons and targeted workshops, authoritative reports, and collaborative projects funded through the Hub and partners. Communications and engagement with the community through a range of outreach events across the partnership will inform wider society of the potential for quantum computing, and we will interact with policy makers within government to ensure that the potential benefits to the UK can be realised.
The Hub will train researchers and PhD students in a wide range of skills, including entrepreneurship, intellectual property and commercialisation. This will help deliver the skilled workforce that will be required for the emerging quantum economy. We will work with our partners to deliver specific training for industry, targeting technical, commercial and executive audiences, to ensure the results of the Hub and their commercial and scientific opportunities are understood.
The Hub will deliver demonstrations, new algorithms and techniques, spinout technologies, and contribute to a skilled workforce. It will also engage with potential users, the forthcoming National Centre for Quantum Computing, the global QC community, policy makers and the wider public to ensure the UK is a leader in this transformative new capability.
The Hub will bring together leading quantum research teams across 17 universities, into a collaboration with more than 25 national and international commercial, governmental and academic entities. It will address critical research challenges, and work with partners to accelerate the development of quantum computing in the UK. It will foster a generation of UK-based scientists and engineers equipped with the new skill sets needed to make the UK into a global centre for innovation as the quantum sector emerges. The Hub will engage with government and citizens so that there is a wide appreciation of the potential of this transformative technology, and a broad understanding of the issues in its adoption.
Hub research will focus on the hardware and software that will be needed for future quantum computers and simulators. In hardware we will advance a range of different platforms, encompassing simulation, near term quantum computers, and longer term fully scalable machines. In software the Hub will develop fundamental techniques, algorithms, new applications and means to verify the correct operation of any future machine. Hardware and software research will be closely integrated in order to provide a full-stack capability for future machines, enabled by the broad expertise of our partners. We will also study the architecture of these machines, and develop emulation techniques to accelerate their development.
Success will require close engagement with a wide range of commercial and government organisations. Our initial partners include finance (OSI), suppliers (Gooch & Housego, Oxford Instruments, E6), integrators and developers (OQC, QM, CQC, QxBranch, D-Wave), users from industry (Rolls-Royce, Johnson Matthey, GSK, BT, BP, TrakM8, Airbus, QinetiQ) and government (DSTL, NCSC), and other research institutions (NPL, ATI, Heilbronn, Fraunhofer). We will build on this strong network using Industry Days, Hackathons and targeted workshops, authoritative reports, and collaborative projects funded through the Hub and partners. Communications and engagement with the community through a range of outreach events across the partnership will inform wider society of the potential for quantum computing, and we will interact with policy makers within government to ensure that the potential benefits to the UK can be realised.
The Hub will train researchers and PhD students in a wide range of skills, including entrepreneurship, intellectual property and commercialisation. This will help deliver the skilled workforce that will be required for the emerging quantum economy. We will work with our partners to deliver specific training for industry, targeting technical, commercial and executive audiences, to ensure the results of the Hub and their commercial and scientific opportunities are understood.
The Hub will deliver demonstrations, new algorithms and techniques, spinout technologies, and contribute to a skilled workforce. It will also engage with potential users, the forthcoming National Centre for Quantum Computing, the global QC community, policy makers and the wider public to ensure the UK is a leader in this transformative new capability.
Status | Active |
---|---|
Effective start/end date | 1/12/19 → 31/05/25 |
Collaborative partners
- University of Bath
- University of Oxford (lead)
- University of Cambridge
- Imperial College London
- Royal Holloway, University of London
- University of Surrey
- University of Glasgow
- University College London
- University of Bristol
- Cardiff University
- Durham University
- University of Sheffield
- University of Edinburgh
- University of Southampton
- University of Strathclyde
- University of Sussex
- University of Warwick
Funding
- Engineering and Physical Sciences Research Council
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.
Datasets
-
Dataset for "Tunable frequency conversion in doped photonic crystal fiber pumped near degeneracy"
Murphy, L. (Creator), Olszewski, M. (Creator), Androvitsaneas, P. (Creator), Alvarez Perez, M. (Creator), Smith, W. (Creator), Bennett, A. (Creator), Mosley, P. (Creator) & Davis, A. (Creator), University of Bath, 12 Jul 2024
DOI: 10.15125/BATH-01411
Dataset
-
Code for Group-velocity symmetry in photonic crystal fibre for ultra-tunable quantum frequency conversion
Parry, C. (Creator), Main, P. (Creator), Wright, T. (Creator) & Mosley, P. (Creator), University of Bath, 16 Jun 2021
DOI: 10.15125/BATH-01007
Dataset