NIA - Carbon Dioxide Activation and Valorisation at Copper-Phosphorus Bonds

Project: Research council

Project Details

Description

Carbon dioxide (CO2) is all around us, representing a grave environmental threat. It also represents an opportunity- if we can turn it into useful molecules like plastics or pharmaceuticals, we could fight its environmental threat and use its wide availability to our advantage. Some chemists have managed to use CO2 to add carbon atoms to nitrogen. Carbon-nitrogen bonds are incredibly common in life, so this is a triumph. Nitrogen is above phosphorus in the periodic table, this means they act similarly, and phosphorus-carbon bonds are present in life, but more importantly, really useful for making new molecules. For example, phosphorus-carbon bond chemistry in the form of the "Wittig Reaction", and catalysis relying on ligands with phosphorus carbon bonds are used to make all sorts of useful compounds.
Despite all of the potential offered by phosphorus-carbon bonds, and its similarities to nitrogen, no one has yet reported a catalytic method to make carbon-phosphorus bonds from CO2. We think that we will be able to do this. In our group we investigate the possibility of copper as a catalyst, which is as inexpensive as the pennies in your pocket. A catalyst is a compound that is added in small amounts that makes a reaction go faster. We have previously shown that copper can catalyse the formation of phosphorus-carbon bonds from a molecule that is very similar to CO2. We want to investigate how we can extend this to carbon dioxide, and to expand it to transform the carbon oxygen bond into carbon hydrogen bonds, which are more useful for chemistry.
StatusActive
Effective start/end date1/03/2428/02/27

Funding

  • Engineering and Physical Sciences Research Council

RCUK Research Areas

  • Catalysis and surfaces
  • Chemical synthesis
  • Co-ordination Chemistry

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.