Project Details
Description
Micro-displays with compact screens of
Visible light communication (VLC) is an emerging technology, in principle offering approximately 300 THz of license free bandwidth that is four orders of magnitude larger than that available in current RF based Wi-Fi or 5G. Considering the highly congested nature of current RF based Wi-Fi, it is expected that VLC would be the leading candidate to offer a complementary solution. Unfortunately, the current approach to the fabrication of VLC is substantially limited to visible LED technologies with conventional electrical driving methods. This approach suffers from a number of insurmountable barriers. Therefore, the performance of current VLC is far below requirements. Global Market Insights has forecasted that the VLC market will exceed $8 billion by 2030.
We propose a Centre-to-Centre consortium consisting of ten leading academics from three universities in the UK (Sheffield; Strathclyde; Bath) and two universities in USA (Harvard; Massachusetts Institute of Technology) to develop a novel integration technology in order to achieve the ultimate micro-display systems and the ultimate visible light communication systems. Unlike any existing photonics & electronics fabrication approaches, we propose a completely different approach to monolithically integrate microscale laser diodes (uLDs) and high electron mobility transistors (HEMTs) on a single chip, where each uLD is electrically driven by individual HEMTs. This will allow us to achieve devices/systems which are impossible to obtain by any existing approaches.
Visible light communication (VLC) is an emerging technology, in principle offering approximately 300 THz of license free bandwidth that is four orders of magnitude larger than that available in current RF based Wi-Fi or 5G. Considering the highly congested nature of current RF based Wi-Fi, it is expected that VLC would be the leading candidate to offer a complementary solution. Unfortunately, the current approach to the fabrication of VLC is substantially limited to visible LED technologies with conventional electrical driving methods. This approach suffers from a number of insurmountable barriers. Therefore, the performance of current VLC is far below requirements. Global Market Insights has forecasted that the VLC market will exceed $8 billion by 2030.
We propose a Centre-to-Centre consortium consisting of ten leading academics from three universities in the UK (Sheffield; Strathclyde; Bath) and two universities in USA (Harvard; Massachusetts Institute of Technology) to develop a novel integration technology in order to achieve the ultimate micro-display systems and the ultimate visible light communication systems. Unlike any existing photonics & electronics fabrication approaches, we propose a completely different approach to monolithically integrate microscale laser diodes (uLDs) and high electron mobility transistors (HEMTs) on a single chip, where each uLD is electrically driven by individual HEMTs. This will allow us to achieve devices/systems which are impossible to obtain by any existing approaches.
Status | Active |
---|---|
Effective start/end date | 1/06/22 → 30/11/26 |
Collaborative partners
- University of Bath
- University of Sheffield (lead)
- University of Strathclyde
Funding
- Engineering and Physical Sciences Research Council
RCUK Research Areas
- Optics, photonics and lasers
- Optical Devices and Subsystems
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.