Enabling industrial deployment of deep eutectic solvents through manufacturing tools

  • Edler, Karen (PI)

Project: Research council

Project Details

Description

Solvents are ubiquitous in chemistry, used to bring species together for reactions, for separations and for processing but most chemical synthesis makes use of volatile organic compounds (VOCs). VOCs are toxic, volatile, flammable and are largely passive spectators to the reactions carried out within them yet are central to all industrial production of chemical species from therapeutics to catalyst particles. Recently, however, a family of novel solvents, deep eutectic solvents (DES) have been demonstrated, by one of our team, to allow water-sensitive synthetic reactions to be safely done on the benchtop and also to play an active role in directing reactions and structuring nanomaterials. This recently developed class of solvents therefore have enormous potential to replace VOCs with safer, greener liquids which, in addition, have intriguing properties, currently not understood, that allow them to defy existing synthetic practice. Yet DES bring their own challenges to transitioning them into manufacturing practice, requiring development of a new manufacturing platform to enable their rapid deployment in industrial processes, as well as requiring an improved understanding of how these solvents facilitate syntheses.

DES are room temperature liquids consisting of mixtures of a salt and hydrogen-bonding neutral molecules. Cheap, non-toxic, biodegradable, sourced from biomass, they are highly tuneable for specific applications. Yet, surprisingly little is understood about how DES structures and interactions facilitate and direct syntheses. This project aims to link a greater understanding of solvent structuring in DES and solute interactions in DES, with state-of-the-art organometallic synthesis and functional meta-materials preparation, and crucially focuses on implementation of manufacturing solutions to allow these fundamental investigations a route into real industrial practices. Use of molecular assemblies in DES and novel continuous manufacturing technologies will open the way to design of cheaper, safer, more environmentally friendly reaction processes, leading to new functional materials and greener routes to pharmaceuticals, agrochemicals and other fine chemicals.
StatusFinished
Effective start/end date1/04/1931/03/22

Funding

  • Engineering and Physical Sciences Research Council

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 13 - Climate Action

RCUK Research Areas

  • Chemical reaction dynamics and mechanisms
  • Chemical synthesis
  • Manufacturing
  • Gas and Solution Phase Reactions
  • Chemical Synthetic Methodology
  • Manufacturing Machinery & Plant

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.