CARS EXPLORER

Project: EU Commission

Description

The CARS EXPLORER seeks to demonstrate the concept of innovative light-based contrasting technologies for functional in situ imaging in life science and biomedical research. Our ultimate goal is to develop an endoscope based on non-linear optics (NLO) and laser pulse phase shaping. Non linear laser pulse interactions with living tissues provide unique possibilities, such as an absence of sample preparation, direct multiparametric visualization with molecular specificity and cellular resolution, and deep sample penetration. Nevertheless, the effective transfer of NLO to biomedical applications faces major technological challenges related to the delivery of ultra-short laser pulses, the weakness of the signal produced in biological samples and the difficulty in interpreting generated contrasts. Therefore, the CARS EXPLORER interdisciplinary consortium includes partners with expertise ranging from optical physics to the clinic. The work plan is split into 5 RTD workpackages: three are intended to overcome specific technological problems with (1) the development of dedicated methodology using phase shaping for NLO imaging of deep biological tissues, (2) the development of specific photonic crystal fibre optics for the excitation, delivery and collection of NLO signals, and (3) the extraction of relevant information from NLO signals generated in biological tissues. The two other workpackages will determine the assets and constraints in NLO imaging through appropriate experimental biological models. These models will also assess each technological improvement made on the microscope and endoscope prototypes. Last, to bring the concept to the diagnostic level, we will explore the molecular and morphological NLO signatures associated with tumor development in skin cancer. In addition to the challenge of developing pulse shaped NLO-based endoscope technology, this project will have strategic and economic impact by providing a non-invasive functional exploration method.
StatusFinished
Effective start/end date1/03/0831/08/11

Funding

  • European Commission

Fingerprint

nonlinear optics
endoscopes
pulses
delivery
economic impact
lasers
bionics
life sciences
fiber optics
tumors
penetration
cancer
microscopes
prototypes
signatures
photonics
methodology
preparation
physics
excitation