Automating Concrete Construction (ACORN)

Project: Research council

Project Details


Our long-term vision is to dramatically improve whole life construction sector sustainability and productivity by creating a culture that takes a fresh, holistic approach to the manufacture, assembly, reuse, and deconstruction of concrete buildings, leading to a healthier, safer, built environment.
Currently, up to half of the concrete used in buildings is unnecessary, and is only there because it is shaped using planar formwork, used since Roman times. This leads to inefficient prismatic shapes for the beams, columns and floor-slabs, which is wasteful, architecturally constraining and a major driver of embodied emissions in construction. This need not be the case. Concrete is initially a liquid and can form structures of any shape, given the right mould. By moving the construction of concrete buildings off-site, to a highly automated, quality controlled environment, and using robotics to create optimised non-prismatic formwork, our buildings can become more sustainable and the construction industry more productive.
ACORN's approach builds on the well-established computational design expertise of the team, who have developed innovative digital tools and techniques to optimise the shape, layout, structure and façade of buildings during the design phase. It will extend this approach downstream in the building process, to encompass fabrication.
The novelty here lies in the creation of integrated end-to-end digital processes to automate the design and manufacture of non-prismatic building elements. It capitalises on the recent proliferation of affordable robotics, and brings them into an industry ripe for a step-change in sustainability and productivity.
Something as simple as allowing beams, columns and floor-slabs to have the shape they need to do their job, rather than the shape they need to be easily formed, allows a complete rethink of the way material is used in our buildings. We can begin to ask questions like what shape should they be, what material hould we make them from, how can we reinforce the elements efficiently, how can we take into account whole-life value and how should we organise our design processes to take advantage? ACORN will answer all of these questions.
Effective start/end date1/01/1931/03/22

Collaborative partners

  • University of Bath (lead)
  • University of Cambridge
  • University of Dundee
  • AECOM Limited UK
  • AKT II Ltd
  • ARUP Group Limited
  • Building Research Establishment
  • Buro Happold
  • Foster + Partners
  • Laing O'Rourke plc
  • OPS Structures Ltd
  • Byrne Bros
  • McKinsey and Company UK
  • Tonkin Liu


  • Engineering and Physical Sciences Research Council

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 8 - Decent Work and Economic Growth
  • SDG 12 - Responsible Consumption and Production
  • SDG 13 - Climate Action


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.