If you made any changes in Pure these will be visible here soon.

Research Output 2006 2019

Filter
Chapter
2016

Homogeneous lie groups

Fischer, V. & Ruzhansky, M., Mar 2016, Quantization on Nilpotent Lie Groups. Birkhäuser, p. 91-170 80 p. (Progress in Mathematics; vol. 314).

Research output: Chapter in Book/Report/Conference proceedingChapter

Open Access
Homogeneous Groups
Euclidean
Harmonic Analysis
Dilation
One to many

Preliminaries on lie groups

Fischer, V. & Ruzhansky, M., Mar 2016, Quantization on Nilpotent Lie Groups. Birkhäuser, p. 15-56 42 p. (Progress in Mathematics; vol. 314).

Research output: Chapter in Book/Report/Conference proceedingChapter

Open Access
Notation

Pseudo-differential operators on the Heisenberg group

Fischer, V. & Ruzhansky, M., Mar 2016, Quantization on Nilpotent Lie Groups. Birkhäuser, p. 427-489 63 p. (Progress in Mathematics; vol. 314).

Research output: Chapter in Book/Report/Conference proceedingChapter

Open Access
Heisenberg Group
Pseudodifferential Operators
Line
13 Citations (Scopus)

Quantization on compact lie groups

Fischer, V. & Ruzhansky, M., Mar 2016, Quantization on Nilpotent Lie Groups. Birkhäuser, p. 57-90 34 p. (Progress in Mathematics; vol. 314).

Research output: Chapter in Book/Report/Conference proceedingChapter

Open Access
Compact Lie Group
Quantization
Nilpotent Group
Operator
Irreducible Representation
7 Citations (Scopus)

Quantization on graded lie groups

Fischer, V. & Ruzhansky, M., 1 Jan 2016, Quantization on Nilpotent Lie Groups. Basel, Switzerland: Birkhäuser, p. 271-426 156 p. (Progress in Mathematics; vol. 314).

Research output: Chapter in Book/Report/Conference proceedingChapter

Open Access
Quantization
Line

Rockland operators and Sobolev spaces

Fischer, V. & Ruzhansky, M., Mar 2016, Quantization on Nilpotent Lie Groups. Birkhäuser, p. 171-269 99 p. (Progress in Mathematics; vol. 314).

Research output: Chapter in Book/Report/Conference proceedingChapter

Open Access
Operator Space
Sobolev Spaces
Line
2013
2 Citations (Scopus)

Nilpotent Gelfand pairs and spherical transforms of Schwartz functions II: Taylor expansions on singular sets

Fischer, V., Ricci, F. & Yakimova, O., 1 Jan 2013, Lie Groups: Structure, Actions, and Representations: In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday. Huckleberry, A., Penkov, I. & Zuckerman, G. (eds.). New York, U. S. A.: Birkhauser Boston, p. 81-112 32 p. (Progress in Mathematics; vol. 306).

Research output: Chapter in Book/Report/Conference proceedingChapter

Gelfand Pairs
Singular Set
Taylor Expansion
Transform
Invariant