Projects per year

## Personal profile

### Willing to supervise PhD

Fourier analysis on manifold with symmetries

## Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

- 1 Similar Profiles

Gelfand Pairs
Mathematics

Nilpotent Lie Group
Mathematics

Heisenberg Group
Mathematics

Transform
Mathematics

Quantization
Mathematics

Sub-Laplacian
Mathematics

Spherical Functions
Mathematics

Singular Set
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Projects 2016 2016

- 1 Finished

## Research Output 2013 2018

### Nilpotent Gelfand pairs and Schwartz extensions of spherical transforms via quotient pairs

Fischer, V., Ricci, F. & Yakimova, O. 15 Feb 2018 In : Journal of Functional Analysis. 274, 4, p. 1076-1128Research output: Contribution to journal › Article

Open Access

File

Gelfand Pairs

Quotient

Transform

Nilpotent Lie Group

Invariant

### Non-singular actions of countable groups

Jarrett, K. 5 May 2018 128 p.Research output: Thesis › Doctoral Thesis

Open Access

File

Countable

Ergodic Theorem

Measure space

Critical Dimension

Relationships

2
Citations

### Sobolev spaces on graded lie groups

Fischer, V. & Ruzhansky, M. 1 Jul 2017 In : Annales de l'institut Fourier. 67, 4, p. 1671-1723 53 p.Research output: Contribution to journal › Article

Open Access

Positive Operator

Sobolev Spaces

Sub-Laplacian

Sobolev Embedding

Interpolation Spaces

### Homogeneous lie groups

Fischer, V. & Ruzhansky, M. Mar 2016*Quantization on Nilpotent Lie Groups.*Springer Basel, p. 91-170 80 p. (Progress in Mathematics; vol. 314)

Research output: Chapter in Book/Report/Conference proceeding › Chapter

Open Access

Homogeneous Groups

Euclidean

Harmonic Analysis

Dilation

One to many

### Preliminaries on lie groups

Fischer, V. & Ruzhansky, M. Mar 2016*Quantization on Nilpotent Lie Groups.*Springer Basel, p. 15-56 42 p. (Progress in Mathematics; vol. 314)

Research output: Chapter in Book/Report/Conference proceeding › Chapter

Open Access

Notation