Projects per year

## Personal profile

### Willing to supervise PhD

Efficient solvers for large-scale inverse problems

## Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

- 3 Similar Profiles

Arnoldi
Mathematics

Ill-posed Problem
Mathematics

Tikhonov Regularization
Mathematics

Discrepancy Principle
Mathematics

Regularization Parameter
Mathematics

Krylov Subspace
Mathematics

Numerical Experiment
Mathematics

Iterative methods
Engineering & Materials Science

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Projects 2017 2021

### Fast solvers for frequency-domain wave-scattering problems and applications

Graham, I., Gazzola, S. & Spence, E.

1/01/19 → 31/12/21

Project: Research council

## Research Output 2011 2019

### Arnoldi decomposition, GMRES, and preconditioning for large-scale linear discrete ill-posed problems

Gazzola, S., Noschese, S., Novati, P. & Reichel, L., 27 Feb 2019, (Accepted/In press) In : Applied Numerical Mathematics.Research output: Contribution to journal › Article

File

2
Citations
(Scopus)

### IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems

Gazzola, S., Hansen, P. C. & Nagy, J. G., 3 Aug 2018, In : Numerical Algorithms. p. 1-39 39 p.Research output: Contribution to journal › Article

### Convex optimisation for partial volume estimation in compressive quantitative MRI

Duarte, R., Chen, Z., Gazzola, S., Marshall, I., Davies, M. & Wiaux, Y., 28 Apr 2017, (Accepted/In press).Research output: Contribution to conference › Abstract

1
Citations
(Scopus)

### Fast nonnegative least squares through flexible Krylov subspaces

Gazzola, S. & Wiaux, Y., 27 Apr 2017, In : SIAM Journal on Scientific Computing. 39, 2, p. A655–A679 25 p.Research output: Contribution to journal › Article

Open Access

File

Krylov Subspace

Least Squares

Non-negative

Least Squares Problem

Iterative methods

4
Citations
(Scopus)

### A new framework for multi-parameter regularization

Gazzola, S. & Reichel, L., 1 Sep 2016, In : BIT Numerical Mathematics. 56, 3, p. 919-949 31 p.Research output: Contribution to journal › Article

Krylov Subspace

Regularization Parameter

Iterative methods

Regularization

Discrepancy Principle