• 5 WEST 2.44


Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

The research in the laboratory is focused upon the investigation of membrane and cellular mechanisms regulating the arterial function in physiological conditions and in disease using contemporary laboratory methods which include small vessel myography, electrophysiological patch-clamp technique, molecular biological and imaging techniques.

Arteries determine blood pressure by changing their diameter which is controlled by the activity of ion channels. One group of ion channels ubiquitously present in smooth muscle cells (VSMCs) which compose the arterial wall, K+ channels are central for the regulation of resting membrane potential hence vascular tone. Among them voltage-gated K(Kv) channels are abundant in pulmonary arterial SMCs and contribute to an important physiological response to hypoxia termed hypoxic pulmonary vasoconstriction (HPV). We initially demonstrated a significant decrease in Kv channels expression (which would results in membrane depolarization and vasoconstriction) in chronic hypoxia in the rat (Smirnov et al., 1994), an animal model of pulmonary hypertension. Recently, we demonstrated that Kv channels in PASMCs are closely linked to the mitochondrial function via a novel mitochondrial-mediated Mg2+-dependent mechanism (Firth et al., 2008). This unique regulatory mechanism is due to an existence of sub-membrane population of mitochondria in PASMCs and is not present in systemic SMCs (Firth et al., 2009).

In collaboration with colleagues from the Department of Physics we developed a novel approach to investigate protein complexes on the cell surface using atomic and magnetic force microscopy. With this approach we successfully demonstrated distribution of individual endothelin receptor molecules on the surface of aortic SMCs (Moskalenko et al, 2010).

In collaboration with colleagues from the University of Calgary, we showed specific distribution along the renal vascular tree of another type of K channels, the inward rectifier (KIR), and demonstrated their functional importance in renal afferent arterioles which are central for blood pressure control (Chilton et al., 2011).


  • QP Physiology
  • Vascular pharmacology
  • Electrophysiology
  • Ion channels
  • Smooth muscle
  • Cellular signalling
  • Arteries
  • Microcirculation

Fingerprint Dive into the research topics where Sergey Smirnov is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 2 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.


Investigating the role of advanced glycation end product on vascular contractility

Smirnov, S., El-bassossy, H. M., Eid, B. G. & Balamash, K.


Project: Other

  • Research Output

    Enhanced calcium entry via activation of NOX/PKC underlies increased vasoconstriction induced by methylglyoxal

    Eid, B. G., Sharib, A. A., El-bassossy, H. M., Balamash, K. & Smirnov, S., 2 Dec 2018, In : Biochemical and Biophysical Research Communications. 506, 4, p. 1013-1018 6 p.

    Research output: Contribution to journalArticle

    Open Access
    1 Citation (Scopus)
    15 Downloads (Pure)

    Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species

    Shaifta, Y., Snetkov, V. A., Prieto-Lloret, J., Knock, G. A., Smirnov, S. V., Aaronson, P. I. & Ward, J. P. T., 1 Apr 2015, In : Cardiovascular Research. p. 121-130

    Research output: Contribution to journalArticle

    Open Access
  • 13 Citations (Scopus)
    132 Downloads (Pure)

    TRPM4 inhibitor 9-phenanthrol activates endothelial cell intermediate conductance calcium-activated potassium channels in rat isolated mesenteric artery

    Garland, C. J., Smirnov, S., Bagher, P., Lim, CS., Huang, C. Y., Mitchell, R., Stanley, C., Pinkney, A. & Dora, K. A., Feb 2015, In : British Journal of Pharmacology. 172, 4, p. 1114-1123 10 p.

    Research output: Contribution to journalArticle

  • 21 Citations (Scopus)
    133 Downloads (Pure)

    Voltage-activated Ca2+ channels in rat renal afferent and efferent myocytes: no evidence for the T-type Ca2+ current

    Smirnov, S. V., Loutzenhizer, K. & Loutzenhiser, R., 1 Feb 2013, In : Cardiovascular Research. 97, 2, p. 293-301 9 p.

    Research output: Contribution to journalArticle

    Open Access
  • 16 Citations (Scopus)
    134 Downloads (Pure)

    β1-adrenoceptor stimulation suppresses endothelial IKCa-channel hyperpolarization and associated dilatation in resistance arteries

    Iarova, P. L., Smirnov, S. V., Dora, K. A. & Garland, C. J., Jun 2013, In : British Journal of Pharmacology. 169, 4, p. 875-886 12 p.

    Research output: Contribution to journalArticle

    Open Access
  • 8 Citations (Scopus)
    126 Downloads (Pure)