If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

My research is related to the study of discrete ill posed linear inverse problems. More specifically, it involves the development of tools for regularisation in the large-scale context, where special attention is given to the use of preconditioning as a regularisation tool. This is based on the construction of relevant models for the problem, linking right and left preconditioning to prior information about the nature of the solution and the noise from the probabilistic model, respectively. Note that, in the case of solution dependent preconditioning, the chosen approach is to exploit information about the solution at each iteration. Therefore, in order to develop solvers for these problems, modified Krylov Subspace methods with regularisation and flexible algorithms with use of preconditioning are investigated. The aim of this project is to exploit the properties of generalised Krylov Subspaces to obtain better reconstructed solutions to discrete high dimensional ill posed linear inverse problems.

Fingerprint Dive into the research topics where Malena Sabate Landman is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Preconditioning Mathematics
Linear Inverse Problems Mathematics
Regularization Mathematics
Krylov Subspace Methods Mathematics
Krylov Subspace Mathematics
Prior Information Mathematics
Probabilistic Model Mathematics
Linking Mathematics

Research Output 2019 2019

Flexible GMRES for Total Variation regularization

Gazzola, S. & Sabate Landman, M., 1 Sep 2019, In : BIT Numerical Mathematics. 59, 3, p. 721-746 26 p.

Research output: Contribution to journalArticle

Open Access