Personal profile

Research interests


Prof Taylor was born in Wanstead, Essex, UK, in 1952. He received BSc and PhD degrees from Imperial College, London University in 1973 and 1984 respectively.

From 1984 to 1985 he held the post of Research Fellow in the Department of Electrical Engineering, University of Edinburgh, Scotland, where worked on certain theoretical aspects of switched-capacitor filter design.

He joined the Department of Electronic and Electrical Engineering at University College London in 1985 and subsequently, in 2002, the Department of Electronic and Electrical Engineering at the University of Bath, where he holds the position of Professor of Microelectronics and Optoelectronics and Director of the Centre for Advanced Sensor Technologies.


Prof Taylor’s current research interests are in the fields of analogue and mixed analogue and digital system design, especially low-power implantable systems for biomedical applications and interfacing between tissue and electronics. For example, a current project aims at increasing the functionality of systems for chronic recording of electroneurogram (ENG) signals.

Together with colleagues at University College, London, the University of Aalborg (Denmark) and the University of Freiburg (Germany), he has been developing a technique that allows the classification of neural activity in terms of its velocity spectrum. This approach allows the level of activity in nerve fibres of different diameter to be measured, providing information about the origin and destination of the neural traffic.

A second application area seeks to provide a cheap, easy to use alternative to patch clamping as a method of measuring cellular activity for applications such as high throughput screening (HTS). This method seeks to avoid the use of expensive and complex equipment and the need for highly trained staff by employing standard CMOS technology that is both very cheap and readily available.

The technique also provides an ideal platform for a range of biosensors of great current significance in medical and defence applications. Although the material surfaces of the ICs are modified to form biocompatible electrodes, no expensive specialist post-processing is required. The A UK patent has recently been filed on this invention.

Professor Taylor has published more than 160 technical papers in international journals and conferences and has co-edited a handbook on filter design. He is a regular presenter and invited speaker at international conferences and symposia.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 7 - Affordable and Clean Energy
  • SDG 14 - Life Below Water


Dive into the research topics where John Taylor is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or