If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

The relationship between the structure of a protein and its function is vital to understanding how molecules give rise to biological effects. However, there is an emerging realisation that it is the flexibility and dynamics of proteins that in many cases drives their functional activity. Understanding this relationship is the next step in our understanding of basic life processes.

The scientific approach we take is to apply a broad range of high-level biophysical techniques, giving detailed quantitative information that provides novel insight. The lab has three major research strands:

New biotechnology

We are developing new experimental approaches to rapidly test proteins for their native function, based on accurate detection of their dynamics and flexibility, what we term the 'dynamic profile'. This technology has major industrial applications but also potential for use in a clinical setting.

Enzyme dynamics

One of the big questions in enzymology is the role of the motion of the protein, the enzyme dynamics. In particular, what is the role of dynamics in determining enzyme specificity, mechanism and activity. These are challenging questions, but answering them will contribute to enzyme biotechnology, for example improving enzyme (re)design.

Disordered protein biophysics

There is a very deep rooted notion that proteins must adopt very fixed structures and this fixed structure defines the functional abilities of the protein. However, a very high percentage of proteins contain large regions that are structurally disordered, lacking a defined structure as we currently define it. We are probing the functional role of structural disorder and how this feeds into molecular signalling networks.

Willing to supervise doctoral students

We have projects available in biopharmaceutical technology and biocatalysis.


  • Enzyme
  • Catalysis
  • Fluorescence Spectroscopy
  • Biophysics
  • Single molecule
  • Biotechnology


Dive into the research topics where Christopher Pudney is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 6 Similar Profiles


Recent external collaboration on country/territory level. Dive into details by clicking on the dots or