Adrian Hill

Dr

  • 4 WEST 1.14

20022019

Research output per year

If you made any changes in Pure these will be visible here soon.

Research Output

2019

Error estimates for semi-Lagrangian finite difference methods applied to Burgers' equation in one dimension

Cook, S., Budd, C., Hill, A. & Melvin, T., 1 Nov 2019, In : Applied Numerical Mathematics. 145, p. 261-282 22 p.

Research output: Contribution to journalArticle

2016

Symmetric general linear methods

Butcher, J. C., Hill, A. T. & Norton, T. J. T., 1 Dec 2016, In : BIT Numerical Mathematics. 56, 4, p. 1189-1212 24 p.

Research output: Contribution to journalArticle

Open Access
File
5 Citations (Scopus)
131 Downloads (Pure)
2015

An iterative starting method to control parasitism for the Leapfrog method

Hill, A. & Norton, T., 1 Jan 2015, In : Applied Numerical Mathematics. 87, 1, p. 145 156 p., Volume 87.

Research output: Contribution to journalArticle

File
1 Citation (Scopus)
71 Downloads (Pure)
2014

The control of parasitism in $G$-symplectic methods

Butcher, J. C., Habib, Y., Hill, A. T. & Norton, T. J. T., 14 Oct 2014, In : SIAM Journal on Numerical Analysis (SINUM). 52, 5, p. 2440-2465 26 p.

Research output: Contribution to journalArticle

Open Access
File
16 Citations (Scopus)
115 Downloads (Pure)
2011

Exponential stability of time-varying linear systems

Hill, A. T. & Ilchmann, A., Jul 2011, In : IMA Journal of Numerical Analysis. 31, 3, p. 865-885 21 p.

Research output: Contribution to journalArticle

10 Citations (Scopus)
2010

Algebraically stable diagonally implicit general linear methods

Hewitt, L. L. & Hill, A. T., Jun 2010, In : Applied Numerical Mathematics. 60, 6, p. 629-636 8 p.

Research output: Contribution to journalArticle

8 Citations (Scopus)

G-matrices for algebraically stable general linear methods

Hill, A. T., 1 Mar 2010, In : Numerical Algorithms. 53, 2-3, p. 281-292 12 p.

Research output: Contribution to journalArticle

5 Citations (Scopus)

Nonautonomous stability of linear multistep methods

Boutelje, B. R. & Hill, A. T., Apr 2010, In : IMA Journal of Numerical Analysis. 30, 2, p. 525-542 18 p.

Research output: Contribution to journalArticle

2009

Algebraically stable general linear methods and the G-matrix

Hewitt, L. L. & Hill, A. T., Mar 2009, In : BIT Numerical Mathematics. 49, 1, p. 93-111 19 p.

Research output: Contribution to journalArticle

13 Citations (Scopus)
3 Citations (Scopus)
2007

The Z-transform and linear multistep stability

Coughlan, J. J., Hill, A. T. & Logemann, H., 2007, In : IMA Journal of Numerical Analysis. 27, 1, p. 45-73 29 p.

Research output: Contribution to journalArticle

4 Citations (Scopus)
2006

Linear multistep methods as irreducible general linear methods

Butcher, J. C. & Hill, A. T., 2006, In : BIT Numerical Mathematics. 46, 1, p. 5-19 15 p.

Research output: Contribution to journalArticle

15 Citations (Scopus)

Nonlinear stability of general linear methods

Hill, A. T., 2006, In : Numerische Mathematik. 103, 4, p. 611-629 19 p.

Research output: Contribution to journalArticle

14 Citations (Scopus)
2005

Multistep approximation of linear sectorial evolution equations

Hill, A. T., 2005, In : IMA Journal of Numerical Analysis. 25, 1, p. 45-56 12 p.

Research output: Contribution to journalArticle

2004

Analysis and numerics for a parabolic equation with impulsive forcing

Hill, A. T. & Wan, W. L., 2004, In : Applied Numerical Mathematics. 50, 3-4, p. 445-474 30 p.

Research output: Contribution to journalArticle

2002

On a multistep method approximating a linear sectorial evolution equation

Del Buono, N. & Hill, A. T., 2002, In : IMA Journal of Numerical Analysis. 22, 3, p. 481-499 19 p.

Research output: Contribution to journalArticle

2 Citations (Scopus)