Description

Heat extraction is often essential to ensuring efficient performance of semiconductor devices and requires minimizing the thermal resistance between the functional semiconductor layers and any heat sink. This paper reports epitaxial growth of N-polar GaN films on polycrystalline diamond substrates of high thermal conductivity with metal-organic vapor phase epitaxy by using a SixC layer formed during deposition of polycrystalline diamond on a silicon substrate. The SixC layer acts to provide the necessary structure ordering information for the formation of a single crystal GaN film at the wafer scale. It is shown that a three-dimensional island (3D) growth process removes hexagonal defects that are induced by the non-single crystal nature of the SixC layer. It is also shown that intensive 3D growth and the introduction of convex curvature of the substrate can be deployed to reduce tensile stress in the GaN epitaxy to enable the growth of crack-free layer up to a thickness of 1.1m. The twist and tilt can be as low as 0.65 and 0.39 respectively, values broadly comparable with GaN grown on Si substrates with a similar structure.
Date made available6 Mar 2017
PublisherUniversity of Bath
Temporal coverage1 May 2013 - 31 Oct 2016
Date of data production1 May 2013 - 31 Aug 2016

Cite this

Allsopp, D. (Creator), Jiang, Q. (Creator), Bowen, C. (Creator)(6 Mar 2017). Growth of GaN Epitaxial Films on Polycrystalline Diamond by Metal-organic Vapor Phase Epitaxy. University of Bath. 10.15125/BATH-00328