Dataset for "Sensing pH of individual microdroplet by combining SERS and indicator paper"

  • Kedong Gong (Creator)
  • Robin Jones (Creator)
  • Kejian Li (Creator)
  • Guanjun Xu (Creator)
  • Hanyun Cheng (Creator)
  • Yiqing Feng (Creator)
  • Ventsislav Valev (Creator)
  • Liwu Zhang (Creator)



This dataset contains the simulated maximum plasmon induced electric field enhancement factor of spherical metallic nanoparticles. Three different particle diameters were investigated, 20 nm, 40 nm and 60 nm. The simulations were finite-difference time-domain simulations performed in Lumerical. The simulation domain was a three-dimensional cube void spanning 1 µm in each direction. The mesh granularity was 1 nm in the volume occupied by the nanoparticle providing high fidelity electric field data. A broad-spectrum Mie source of light (100 nm to 800 nm) was employed and encapsulated the nanoparticle. The electric field distribution in the plane perpendicular to the incident wave vector of the light, bisecting the nanoparticle, was monitored to determine the maximum electric field enhancement. In the first instance, three different material property annals for Au in Lumerical (Palik, CRC handbook of chemistry and physics (CRC) and Johnson & Christy) were modelled and simulated to determine the sensitivity of simulations on the selected material model. Subsequently, a range of metallic material models were trialled to assess the sensitivity of the electric field enhancements on material: Cr (CRC), Fe (CRC), Ti (CRC), Al (CRC), Pt (Palik), Ni (CRC), Pd (Palik), Cu (CRC), Ag (Palik). The excel file contains the maximum electric field enhancments for the different materials.
Date made available30 Jul 2021
PublisherUniversity of Bath

Cite this